精英家教网 > 高中数学 > 题目详情

【题目】某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2.

(Ⅰ)求甲、乙、丙三名同学都选高校的概率;

(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2.

(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;

(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.

【答案】(Ⅰ)(Ⅱ)(ⅰ)(ⅱ)分布列见解析,期望为.

【解析】

(Ⅰ)先根据古典概型概率求甲同学选高校的概率,同理可得乙、丙同学选高校的概率,最后根据独立事件概率乘法公式得结果,(Ⅱ)(ⅰ)先根据古典概型概率求甲同学选高校的概率以及乙、丙未选高校的概率,最后根据独立事件概率乘法公式得结果,(ⅱ)先确定随机变量的取法,再分别求对应概率,列表得分布列,最后根据数学期望公式得结果.

(Ⅰ)甲从四所高校中选2所,共有AB,AC,AD,BC,BD,CD六种方法,

甲同学都选高校,共有AD,BD,CD三种方法,甲同学选高校的概率为

因此乙、丙同学选高校的概率皆为

因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为

(Ⅱ)(ⅰ)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率

(ⅱ)

因此

即分布列为

0

1

2

3

P

因此数学期望为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当前,以“立德树人”为目标的课程改革正在有序推进。目前,国家教育主管部门正在研制的《新时代全面加强和改进学校体育美育工作意见》,以及将出台的加强劳动教育指导意见和劳动教育指导大纲,无疑将对体美劳教育提出刚性要求。为激发学生加强体育活动,保证学生健康成长,某校开展了校级排球比赛,现有甲乙两人进行比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满8局时停止。设甲在每局中获胜的概率为,且各局胜负相互独立。已知第二局比赛结束时比赛停止的概率为.

(1)求的值;

(2)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数 ,有,在 上, ,若 ,则实数m的取值范围为( )

A.B.

C.[-3,3]D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形,平面分别为的中点.

(1)求证:平面

(2)求平面与平面所成锐二面角的大小;

(3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学生对食堂用餐的满意度,从全校在食堂用餐的3000名学生中,随机抽取100名学生对食堂用餐的满意度进行评分.根据学生对食堂用餐满意度的评分,得到如图所示的率分布直方图,

1)求频率分布直方图中的值

2)规定:学生对食堂用餐满意度的评分不低于80分为满意,试估计该校在食堂用餐的3000名学生中满意的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为.

1)从袋中随机抽取两个球,求取出的球的编号之和为偶数的概率;

2)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

的单调递减区间;

②当时,直线y=k与y=f (x)的图象有两个不同交点;

③函数y=f(x)的图象与的图象没有公共点;

④当时,函数的最小值为2.

其中正确结论的序号是_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形,沿对角线折起,使得点在平面上的射影恰好落在边上.

(1)求证:平面平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案