精英家教网 > 高中数学 > 题目详情

【题目】如图,在梯形中,.

(1)求

(2)平面内点的上方,且满足,求的最大值.

【答案】(1);(2)2.

【解析】分析:(1)中, ,中,,,即从而可得结果;(2)中,由余弦定理得,

利用基本不等式可得结果.

详解(1)∵DC∥AB,AB=BC,∴∠ACD=∠CAB=∠ACB.

△ACDDC=AC=t,由余弦定理得

cos∠ACD=

△ACB,cos∠ACB=

t3-2t2+1=0,(t-1)(t2-t-1)=0,

解得t=1,t=

t=1与梯形矛盾舍去t>0,

t=DC=

(2)(1)∠CAD=∠ADC=∠BCD=2∠ACD.

5∠ACD=180°,∠ACD=∠ACB=36°,

∠DPC=3∠ACB=108°.

△DPC由余弦定理得DC2=DP2+CP2-2DP·CPcos∠DPC,

t2=DP2+CP2-2DP·CPcos108°

=(DP+CP)2-2DP·CP(1+cos108°)

=(DP+CP)2-4DP·CPcos254°

∵4DP·CP≤(DP+CP)2,(当且仅当DP=CP时,等号成立.)

∴t2≥(DP+CP)2(1-cos254°)

=(DP+CP)2 sin254°

=(DP+CP)2 cos236°

=(DP+CP)2·

∴(DP+CP)2≤4,DP+CP≤2.

故当DP=CP=1时,DP+CP取得最大值2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(x)=xlnx,g(x)=ax3-.

()求函数(x)的单调递增区间和最小值;

()若函数y= (x)与函数y =g(x)的图象在交点处存在公共切线,求实数a的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为椭圆 上任一点, 为椭圆的焦点,,离心率为

(1)求椭圆的标准方程;

(2)直线 经过点 ,且与椭圆交于 两点,若直线 的斜率依次成等比数列,求直线 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

I)若a=1,求在区间[0,3]上的最大值和最小值;

II)解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难度的计算公式为,其中为第题的难度, 为答对该题的人数, 为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题,测试前根据对学生的了解,预估了每道题的难度,如表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了20名学生的答题数据进行统计,结果如表:

(Ⅰ)根据题中数据,估计中240名学生中第5题的实测答对人数;

(Ⅱ)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为,求的分布列和数学期望;

(Ⅲ)试题的预估难度和实测难度之间会有偏差.设为第题的实测难度,请用设计一个统计量,并制定一个标准来判断本次测试对难度的预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方体的棱长为1,点是棱上的动点,是棱上一点,.

(1)求证:

(2)若直线平面,试确定点的位置,并证明你的结论;

(3)设点在正方体的上底面上运动,求总能使垂直的点所形成的轨迹的长度.(直接写出答案)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=log3,单位是m/s,θ是表示鱼的耗氧量的单位数.

(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?

(2)计算一条鱼静止时耗氧量的单位数。

(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在半径为,圆心角为的扇形金属材料中剪出一个长方形,并且的平分线平行,设.

(1)试将长方形的面积表示为的函数;

2若将长方形弯曲,使重合焊接制成圆柱的侧面,当圆柱侧面积最大时,求圆柱的体积(假设圆柱有上下底面);为了节省材料,想从△中直接剪出一个圆面作为圆柱的一个底面,请问是否可行?并说明理由.

(参考公式:圆柱体积公式.其中是圆柱底面面积,是圆柱的高;等边三角形内切圆半径.其中是边长)

查看答案和解析>>

同步练习册答案