精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆的左、右焦点分别为轴的正半轴上一点,交椭圆于,且的内切圆半径为1.

1)求椭圆的标准方程;

2)若直线和圆相切,且与椭圆交于两点,求的值.

【答案】12

【解析】

1)利用内切圆的性质可知,利用勾股定理构造方程可求得,结合椭圆定义和关系可求得,由此得到椭圆方程;

2)利用与直线相切可求得,将直线方程代入椭圆方程,可利用弦长公式求得;利用直线相切可求得,代入中即可得到结果.

1)设的内切圆于点

,且,有,则

得:,解得:

,即

故所求的椭圆标准方程为:.

2)由(1)知:直线方程为

设点,其到直线的距离为,有

解得:(舍),即,故圆的方程为

得:

相切,有,解得:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中,的中点,的交点.将沿折起到的位置,如图

)证明:平面

)若平面平面,求平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年底,武汉发生新型冠状病毒肺炎疫情,国家卫健委紧急部署,从多省调派医务工作者前去支援,正值农历春节举家团圆之际,他们成为最美逆行者.武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者疑似的新冠肺炎患者无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等四类人员,强化网格化管理,不落一户不漏一人.若在排查期间,某小区有5人被确认为确诊患者的密切接触者,现医护人员要对这5人随机进行逐一核糖核酸检测,只要出现一例阳性,则将该小区确定为感染高危小区.假设每人被确诊的概率均为且相互独立,若当时,至少检测了4人该小区被确定为感染高危小区的概率取得最大值,则____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中有16个格点(ij),其中0≤i≤30≤j≤3.若在这16个点中任取n个点,这n个点中总存在4个点,这4个点是一个正方形的顶点,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数(abR).

1)当b=﹣1时,函数有两个极值,求a的取值范围;

2)当ab1时,函数的最小值为2,求a的值;

3)对任意给定的正实数ab,证明:存在实数,当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知点到直线的距离为3.

1)求实数的值;

2)设是直线上的动点,在线段上,且满足,求点轨迹方程,并指出轨迹是什么图形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆锥PO中,AB是圆O的直径,且AB4C是底面圆O上一点,且AC2,点D为半径OB的中点,连接PD.

1)求证:PC在平面APB内的射影是PD

2)若PA4,求底面圆心O到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线C1x=2以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,C2极坐标方程为:ρ22ρcosθ4ρsinθ+4=0.

1)求C1的极坐标方程和C2的普通方程;

2)若直线C3的极坐标方程为,设C2C3的交点为MN,又C1x=﹣2x轴交点为H,求△HMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为(其中为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.

)求曲线的普通方程与曲线的直角坐标方程;

)设点分别是曲线上两动点且,求面积的最大值.

查看答案和解析>>

同步练习册答案