精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,BB1的中点.
(1)求证:平面A1BC1平面ACD1
(2)求异面直线A1F与D1E所成的角的余弦值.
证明:(1)如图,
连结AC,AD1,CD1,A1C1,A1B,C1B.
∵ABCD-A1B1C1D1是正方体,∴AA1CC1,AA1=CC1
∴四边形AA1C1C为平行四边形,∴A1C1AC.
A1C1?平面ACD1,AC?平面ACD1,∴A1C1平面ACD1
∵A1D1BC,A1D1=BC,∴四边形A1BCD1为平行四边形,∴A1BCD1
A1B?平面ACD1,CD1?平面ACD1,∴A1B?平面ACD1
又A1B∩A1C1=A1
∴平面A1BC1平面ACD1
(2)连结C1F,∵E,F分别是棱AA1,BB1的中点,∴EFC1D1,EF=C1D1
∴EFC1D1是平行四边形,∴D1FC1E.
设正方体ABCD-A1B1C1D1的棱长为2,解直角三角形求得A1C1=2
2
A1F=C1F=
5

在△A1C1F中,由余弦定理得cos∠A1FC1=
A1F2+C1F2-A1C12
2A1F•C1F
=
(
5
)2+(
5
)2-(2
2
)2
5
×
5
=
1
5

∴异面直线A1F与D1E所成的角的余弦值是
1
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=AA1,D,E,F分别为AB1,CC1,BC的中点.
(1)求证:DE平面ABC;
(2)求证:B1F⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是∠A=60°、边长为a的菱形,又PD⊥底ABCD,且PD=CD,点M、N分别是棱AD、PC的中点.
(1)证明:DN平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点A到平面PMB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=a(如图).
(Ⅰ)若a=2
2
,求证:AB平面CDE;
(Ⅱ)求实数a的值,使得二面角A-EC-D的大小为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文科做)已知平面α面β,AB、CD为异面线段,AB?α,CD?β,且AB=a,CD=b,AB与CD所成的角为θ,平面γ面α,且平面γ与AC、BC、BD、AD分别相交于点M、N、P、Q.
(1)若a=b,求截面四边形MNPQ的周长;
(2)求截面四边形MNPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图在平行六面体ABCD-A1B1C1D1中,E、F、G分别是A1D1、D1D、D1C1的中点.
求证:平面EFG平面AB1C.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直三棱柱ABC-A1B1C1的底面中,AB⊥AC,AB=AC=a,D为CC1的中点,
CC1
AC

(1)λ为何值时,A1D⊥平面ABD;
(2)当A1D⊥平面ABD时,求C1到平面ABD的距离;
(3)当二面角A-BD-C为60°时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.
(I)求证:直线AE⊥平面A1D1E;
(II)求三棱锥A-A1D1E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

同步练习册答案