精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当时,函数恰有两个零点,证明:

【答案】(1) 时,上单调递减,在上单调递增;当时,上单调递增,在上单调递减.

(2)证明见解析.

【解析】分析:(1)对函数求导,令 ,分,判断出单调性;(2)采用综合分析法证明, 由已知条件求出 ,要证明,即证,即证 ,令,通过证明,得出结论。

详解 ().

∴由.

,当变化时,的变化情况如下表

单调递减

极小值

单调递增

,当变化时,的变化情况如下表:

+

0

-

单调递增

极大值

单调递减

综上,当时,上单调递减,在上单调递增;

时,上单调递增,在上单调递减.

()∵当时,函数恰有两个零点

,即.

两式相减,得

.

∴要证,即证,即证

即证

,则即证.

,即证恒成立.

.

恒成立.∴单调递增.

是连续函数,

∴当时,

∴当时,有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始溶液含杂质2%,每过滤一次可使杂质含量减少.

1)写出杂质含量y与过滤次数n的函数关系式;

2)过滤7次后的杂质含量是多少?过滤8次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,到如图所示的频率分布直方图.

1)求图中的值及样本的中位数与众数;

2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

1)求曲线的极坐标方程与直线的直角坐标方程;

2)在曲线上取两点与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,已知四边形为平行四边形,平面平面的中点,.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,底面是边长为2的正三角形, .

(1)求证:平面平面

(2)若求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且.

1)求

2)若上单调递减,求实数m的取值范围;

3)当时,有最大值1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数的值域为,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技公司研究开发了一种新产品,生产这种新产品的每天固定成木为30000元,每生产x件,需另投入成本为t元, ,每件产品售价为10000元.(该新产品在市场上供不应求可全部卖完.)

(1)写出每天利润y关于每天产量x的函数解析式;

(2)当每天产量为多少件时,该公司在这一新产品的生产中每天所获利润最大.

查看答案和解析>>

同步练习册答案