精英家教网 > 高中数学 > 题目详情
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,那么点P在圆x2+y2=17内部的概率是(  )
A、
1
3
B、
2
5
C、
2
9
D、
4
9
分析:连续掷两次骰子,以先后得到的点数结果有36种,构成的点的坐标有36个,把这些点列举出来,检验是否满足x2+y2<17,满足这个条件的点就在圆的内部,数出个数,根据古典概型个数得到结果.
解答:解:这是一个古典概型
由分步计数原理知:连续掷两次骰子,构成的点的坐标有6×6=36个,
而满足x2+y2<17的有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)
共有8个,
∴P=
8
36
=
2
9

故选C.
点评:将数形结合的思想渗透到具体问题中来,用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏.比如,列举点的坐标时,我们把横标从小变大挨个列举.
练习册系列答案
相关习题

科目:高中数学 来源:黄冈新内参·高考(专题)模拟测试卷·数学 题型:022

(文)若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率是________.

(理)由于电脑故障,使得随机变量ζ的分布列中部分数据丢失(以□代替),其表如下:

请你先将丢失的数据补齐,再求随机变量ζ的数学期望,其期望值为________.

查看答案和解析>>

同步练习册答案