【题目】已知函数,实数且.
(1)设,判断函数在上的单调性,并说明理由;
(2)设且时,的定义域和值域都是,求的最大值;
(3)若不等式对恒成立,求的范围.
【答案】(1)单调递增,证明见解析;(2);(3)且
【解析】
(1)根据函数单调性定义作差判断函数单调性;
(2)根据单调性确定,,再转化为对应方程实根分布问题,根据韦达定理以及求根公式得关于的函数关系式,最后根据二次函数性质求最值得结果;
(3)先根据绝对值定义化简不等式,变量分离转化为求对应函数最值,
(1)设,则,
∵,,∴,,∴,
即,因此函数在上的单调递增.
(2)由(1)及的定义域和值域都是得,,
因此,是方程的两个不相等的正数根,
等价于方程有两个不等的正数根,
即且且,
解得,
∴,
∵,∴时,最大值为.
(3),则不等式对恒成立,
即,即不等式对恒成立,
令,易证在递增,同理在递减.
∴,,
∴,∴且.
科目:高中数学 来源: 题型:
【题目】已知集合M是具有下列性质的函数的全体:存在实数对,使得对定义域内任意实数x都成立.
(1)判断函数,是否属于集合;
(2)若函数具有反函数,是否存在相同的实数对,使得与同时属于集合若存在,求出相应的;若不存在,说明理由;
(3)若定义域为的函数属于集合,且存在满足有序实数对和;当时,的值域为,求当时函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数对其定义域内的任意,,当时总有,则称为紧密函数,例如函数是紧密函数,下列命题:
紧密函数必是单调函数;函数在时是紧密函数;
函数是紧密函数;
若函数为定义域内的紧密函数,,则;
若函数是紧密函数且在定义域内存在导数,则其导函数在定义域内的值一定不为零.
其中的真命题是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】裴波那契数列(Fibonacci sequence )又称黄金分割数列,因为数学家列昂纳多·裴波那契以兔子繁殖为例子引入,故又称为“兔子数列”,在数学上裴波那契数列被以下递推方法定义:数列满足:,,现从该数列的前40项中随机抽取一项,则能被3整除的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,其中a为常数,e是自然对数的底数,,曲线在其与y轴的交点处的切线记作,曲线在其与x轴的交点处的切线记作,且.
(1)求之间的距离;
(2)对于函数和的公共定义域中的任意实数,称的值为函数和在处的偏差.求证:函数和在其公共定义域内的所有偏差都大于2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为( )
A.22药物单位B.20药物单位C.12药物单位D.10药物单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在六棱锥P﹣ABCDEF中,六边形ABCDEF为正六边形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.
(1)求证:PA⊥平面ABCDEF;
(2)求直线PD与平面PAE所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com