精英家教网 > 高中数学 > 题目详情

【题目】设函数数列满足).

(1)求数列的通项公式

(2)设,若恒成立求实数的取值范围

(3)是否存在以为首项公比为)的数列使得数列的每一项都是数列的不同的项若存在求出所有满足条件的数列的通项公式若不存在请说明理由

【答案】(1)(2)(3)存在,

【解析】

试题分析:(1)由,得出,即可得到数列的通项公式;(2)当时,化简,当时,,得到的表达式,再由,即可求解实数的取值范围(3)由(1)知,分别以分类讨论,即可得到结论.

试题解析:(1)

(2)当)时,

)时,

综上:).

只需研究即可

(3)由(1)知

则为常数列不符合题意

除首项之外各项均为偶数不存在

除首项之外各项均为偶数不存在

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;

(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程.

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在D上的函数f(x)满足:对任意x∈D,存在常数M>0,都有-M<f(x)<M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界。

(Ⅰ)判断函数f(x)=-2x+2,x∈[0,2]是否是有界函数,请说明理由;

(Ⅱ)若函数f(x)=1++,x∈[0,+∞)是以3为上界的有界函数,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.

1求椭圆的标准方程;

2已知点,和面内一点,过点任作直线与椭圆相交于两点,设直线的斜率分别为,若,试求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校名教师参加我县六城同创干部职工进网络,服务群众进社区活动,他们的年龄均在25岁至50岁之间,按年龄分组:第一组,第二组,第三组,第四组,第五组,得到的频率分布直方图如图所示:

上表是年龄的频数分布表.

(1)求正整数的值;

(2)根据频率分布直方图估计我校这名教师年龄的中位数和平均数;

(3)从第一、二组用分层抽样的方法抽取4人,现在从这4人中任取两人接受咸丰电视台的采访,求从这4人中选取的两人年龄均在第二组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,

(1)在上确定一点,使得平面,并求的值;

(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有一条光线从射出,并且经轴上一点反射.

(1)求入射光线和反射光线所在的直线方程(分别记为);

(2)设动直线,当点的距离最大时,求所围成的三角形的内切圆(即:圆心在三角形内,并且与三角形的三边相切的圆)的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)与椭圆相交所得的弦长为

)求抛物线的标准方程;

)设上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值)时,证明:直线恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过椭圆右顶点和上顶点的直线与圆相切.

(1)求椭圆的方程;

(2)设是椭圆的上顶点,过点分别作直线交椭圆两点,设这两条直线的斜率分别为,且,证明:直线过定点.

查看答案和解析>>

同步练习册答案