精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn.
(1)求数列{an}与{bn}的通项公式;
(2)设cn·bn,证明:当且仅当n≥3时,cn+1<cn..
(1)bn=21-n(2)见解析
(1)解:a1=S1=4,当n≥2时,an=Sn-Sn-1=2n(n+1)-2(n-1)n=4n.
又a1=4适合上式,∴an=4n(n∈N*).
将n=1代入Tn=2-bn,得b1=2-b1,∴T1=b1=1.
当n≥2时,Tn-1=2-bn-1,Tn=2-bn
∴bn=Tn-Tn-1=bn-1-bn
∴bnbn-1,∴bn=21-n.
(2)证明:证法1:由cn·bn=n2·25-n,得.
当且仅当n≥3时,1+<,即cn+1<cn.
证法2:由cn·bn=n2·25-n
得cn+1-cn=24-n[(n+1)2-2n2]=24-n[-(n-1)2+2].
当且仅当n≥3时,cn+1-cn<0,即cn+1<cn
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知{an}是等差数列,a1=1,公差d≠0,Sn为其前n项和.若a1,a2,a5成等比数列,则S8=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列{an}满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后顺次成为等比数列{bn}的前三项.
(1)分别求数列{an}、{bn}的通项公式;
(2)设Tn(n∈N*),若Tn<c(c∈Z)恒成立,求c的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个等差数列前4项之和为26,最末4项之和为110,所有项之和为187,则它的项数为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(1)已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32.若am=8,则m=________.
(2)设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如下表定义函数f(x):
x
1
2
3
4
5
f(x)
5
4
3
1
2
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,求a2008.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设等差数列{an}的前n项和为Sn,若a11a8=3,S11S8=3,则使an>0的最小正整数n的值是(  )
A.8B.9
C.10D.11

查看答案和解析>>

同步练习册答案