【题目】已知向量,,角,,为的内角,其所对的边分别为,,.
(1)当取得最大值时,求角的大小;
(2)在(1)成立的条件下,当时,求的取值范围.
【答案】(1)(2)
【解析】分析:(1)由两向量的坐标,利用平面向量的数量积运算列出关系式,利用诱导公式及二倍角的余弦函数公式化简,整理后得到关于的二次函数,由的范围求出的范围,利用正弦函数的图象与性质得出此时的范围,利用二次函数的性质即可求出取得最大值时的度数;
(2)由及的值,利用正弦定理表示出,再利用三角形的内角和定理用表示出,将表示出的代入中,利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由的范围求出这个角的范围,利用正弦函数的图象与性质求出此时正弦函数的值域,即可确定出的取值范围.
详解:
(1)
,令,,
原式,当,即,时,取得最大值.
(2)当时,,.由正弦定理得:(为的外接圆半径)
于是
.
由,得,于是
,,
所以的范围是.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底, 是的中点。
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图。
(一)人数统计表: (二)各年龄段人数频率分布直方图:
(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出、、的值;
(Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动。若将这个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知产品的质量采用综合指标值进行衡量,为一等品;为二等品;为三等品.我市一家工厂准备购进新型设备以提高生产产品的效益,在某供应商提供的设备中任选一个试用,生产了一批产品并统计相关数据,得到频率分布直方图:
(1)估计该新型设备生产的产品为二等品的概率;
(2)根据这家工厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
一等品 | 二等品 | 三等品 | |
销售率 | |||
单件售价 | 元 | 元 | 元 |
根据以往的销售方案,未售出的产品统一按原售价的全部处理完.已知该工厂认购该新型设备的前提条件是,该新型设备生产的产品同时满足下列两个条件:
①综合指标值的平均数不小于(同一组中的数据用该组区间的中点值作代表);
②单件平均利润值不低于.
若该新型设备生产的产品的成本为元/件,月产量为件,在销售方案不变的情况下,根据以上图表数据,分析该新型设备是否达到该工厂的认购条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线过点P且与x轴、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在这样的直线满足下列条件:①△AOB的周长为12;②△AOB的面积为6.若存在,求出方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是出租汽车计价器的程序框图,其中表示乘车里程(单位:),表示应支付的出租汽车费用(单位:元).有下列表述:
①在里程不超过的情况下,出租车费为8元;
②若乘车,需支付出租车费20元;
③乘车的出租车费为
④乘车与出租车费的关系如图所示:
则正确表述的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①存在实数x,使 ;
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数y=sin2x的图象向左平移 个单位,得到函数 的图象;
④定义在R上的奇函数f(x)满足f(x+2)=f(﹣x),当0≤x≤1时,f(x)=2x,
则f(2015)=﹣2.
其中正确命题是(写出所有正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)求f(x)的极值;
(2)当0<x<e时,求证:f(e+x)>f(e﹣x);
(3)设函数f(x)图象与直线y=m的两交点分别为A(x1 , f(x1)、B(x2 , f(x2)),中点横坐标为x0 , 证明:f'(x0)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,点与关于坐标原点对称,直线垂直于轴,垂足为,与抛物线交于不同的两点, ,且.
(1)求点的横坐标.
(2)若以, 为焦点的椭圆过点
(ⅰ)求椭圆的标准方程;
(ⅱ)过点作直线与椭圆交于, 两点,设,若,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com