精英家教网 > 高中数学 > 题目详情
10.给出下列结论:
①(cosx)′=sinx;
②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;
③若y=$\frac{1}{{x}^{2}}$,则y′=-$\frac{1}{x}$;
④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.
其中正确的个数是(  )
A.0B.1C.2D.3

分析 利用常用函数的求导公式逐一判定.

解答 解:对于①,(cosx)′=-sinx,故错;
对于②,(sin$\frac{π}{3}$)′=0,故错;
对于③,若y=$\frac{1}{{x}^{2}}$,则y′=-2$\frac{1}{{x}^{3}}$,故错;
对于④,(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$,正确.
故选:B.

点评 本题考查了,常用函数的求导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知各项都不相等的数列{an}满足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求数列的通项公式an
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求数列{bn}的前n项和Sn
(3)证明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-2x+3
(Ⅰ)若函数$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值为3,求实数m的值;
(Ⅱ)若对任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆心C的坐标为(2,-2),圆C与x轴和y轴都相切
(1)求圆C的方程
(2)求与圆C相切,且在x轴和y轴上的截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在区间(0,1)上随机地取两个数,则两数之和小于$\frac{4}{3}$的概率为$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.给定矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,设椭圆$\frac{{x}^{2}}{4}$+y2=1在矩阵AB对应的变换下得到曲线F,求F的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在区间[-1,1]上是增函数,求实数a的值组成的集合A;
(3)设关于x的方程f(x)=$\frac{1}{x}$的两个非零实根为x1,x2,试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆的半径为6cm,则圆心角为30°的扇形面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{π}{3}$,求x的值;
(3)求f(x)的单调区间和最值.

查看答案和解析>>

同步练习册答案