【题目】现有边长均为1的正方形正五边形正六边形及半径为1的圆各一个,在水平桌面上无滑动滚动一周,它们的中心的运动轨迹长分别为,,,,则( )
A.B.C.D.
【答案】B
【解析】
由题意可知,它们的中心滚动一周的运动轨迹都是圆心角为2π的弧长,设半径分别为r1,r2,r3,r4,则半径为中心与顶点的距离,由正方形、正五边形、正六边形得几何特征可知,r1<r2<1,r3=r4=1,再利用弧长公式即可得到l1<l2<l3=l4.
解:由题意可知,它们的中心滚动一周的运动轨迹都是圆心角为2π的弧长,
设半径分别为r1,r2,r3,r4,由题意可知,半径为中心与顶点的距离,
又因为正方形、正五边形、正六边形的边长均为1,圆的半径为1,
对于正方形,如图所示:,∵∠AOB=90°,∴;
对于正五边形,如图所示:,∵∠AOB=72°<90°,∠OAB=∠OBA=54°<72°,∴r1<r2<1;
对于正六边形,如图所示:,∠AOB=60°,∴△AOB为等边三角形,∴r3=OA=1;
而 r4=1,
又因为l1=2πr1,l2=2πr2,l3=2πr3,l4=2πr4,
所以l1<l2<l3=l4,
故选:B.
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,函数的图象沿轴向右平移个单位长度后关于轴对称,则下列结论正确的是______.(填序号)
①是函数图象的一个对称中心;
②在区间上的最小值为-2;
③的单调递增区间是;
④函数的图象与直线在时只有一个交点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省的一个气象站观测点在连续4天里记录的AQI指数M与当天的空气水平可见度y(单位:cm)的情况如下表:
M | 900 | 700 | 300 | 100 |
y | 0.5 | 3.5 | 6.5 | 9.5 |
该省某市2019年12月份AQI指数M的频数分布表如下:
M | |||||
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设,若x与y之间具有线性关系,试根据上述数据求出y关于x的线性回归方程;
(2)王先生在该市开了一家洗车店,洗车店每天的平均收入与AQI指数的相关关系如下表:
M | |||||
日均收入(元) | -2000 | -1000 | 2000 | 6000 | 8000 |
估计王先生的洗车店2019年12月份每天的平均收入.
附参考公式:,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线E的参数方程为(为参数),以O为极点,x轴非负半轴为极轴建立极坐标系,直线,的极坐标方程分别为,,交曲线E于点A,B,交曲线E于点C,D.
(1)求曲线E的普通方程及极坐标方程;
(2)求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三(1)班在一次语文测试结束后,发现同学们在背诵内容方面失分较为严重.为了提升背诵效果,班主任倡议大家在早、晚读时间站起来大声诵读,为了解同学们对站起来大声诵读的态度,对全班50名同学进行调查,将调查结果进行整理后制成下表:
考试分数 | ||||||
频数 | 5 | 10 | 15 | 5 | 10 | 5 |
赞成人数 | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使测试优秀率为30%,则优秀分数线应定为多少分?
(2)依据第1问的结果及样本数据研究是否赞成站起来大声诵读的态度与考试成绩是否优秀的关系,列出2×2列联表,并判断是否有90%的把握认为赞成与否的态度与成绩是否优秀有关系.
参考公式及数据:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2-(a2+b)x+aln x(a,b∈R).
(Ⅰ)当b=1时,求函数f(x)的单调区间;
(Ⅱ)当a=-1,b=0时,证明:f(x)+ex>-x2-x+1(其中e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的内接等边三角形的面积为(其中为坐标原点).
(1)试求抛物线的方程;
(2)已知点两点在抛物线上,是以点为直角顶点的直角三角形.
①求证:直线恒过定点;
②过点作直线的垂线交于点,试求点的轨迹方程,并说明其轨迹是何种曲线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com