精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若函数仅有个零点,则实数的取值范围为______.

【答案】

【解析】

,得出,令,将问题转化为直线与函数的图象有且仅有个交点,然后对的大小进行分类讨论,利用数形结合思想得出关于实数的等式或不等式,即可求出实数的取值范围.

,则,得,令

则问题转化为直线与函数的图象有且仅有个交点,

时,,此时函数的图象与直线只有个公共点,符合题意;

时,,若函数的图象与直线只有个公共点,

,如下图所示,

显然成立,下面解不等式,即

构造函数,令,得.

时,,当时,.

所以,函数处取得最大值,即

所以,当时,不等式恒成立,此时,.

时,,若函数的图象与直线个交点,则有

,由上可知,(舍去).

综上所述,.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,分别为的中点,.

1)求证:平面

2)求直线与底面所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国仓储指数是反映仓储行业经营和国内市场主要商品供求状况与变化趋势的一套指数体系.如图所示的折线图是2017年和2018年的中国仓储指数走势情况.根据该折线图,下列结论中不正确的是( )

A. 2018年1月至4月的仓储指数比2017年同期波动性更大

B. 2017年、2018年的最大仓储指数都出现在4月份

C. 2018年全年仓储指数平均值明显低于2017年

D. 2018年各月仓储指数的中位数与2017年各月仓储指数中位数差异明显

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面,且分别为棱的中点.

I)证明:直线共面;

)证明:平面平面;并试写出到平面的距离(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,直线的参数方程为为参数).以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线与曲线交于两点.

1)求实数的取值范围;

2)若,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)有两个零点,求实数的取值范围;

(2)若对任意的均有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,边长为2为等腰直角三角形,,平面平面ABCD.

(1)证明:平面PAD

(2)求平面PAD与平面PBC所成锐二面角的余弦值;

(3)棱PD上是否存在一点E,使得平面PBC?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线

(1)求曲线的方程;

(2)过点的直线与曲线交于两点,是否存在定点,使得直线斜率之积为定值,若存在,求出坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案