精英家教网 > 高中数学 > 题目详情

【题目】经过对K2的统计量的研究,得到了若干个观测值,当K2≈6.706时,我们认为两分类变量AB(  )

A. 67.06%的把握认为AB有关系 B. 99%的把握认为AB有关系

C. 0.010的把握认为AB有关系 D. 没有充分理由说明AB有关系

【答案】B

【解析】

根据所给的观测值,同临界值表中的临界值进行比较,根据P(K2>3.841)=0.05,得到我们有1-0.05=95%的把握认为A与B有关系.

依据下表:

P( K2≥k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828



∴我们在错误的概率不超过0.01的前提下有99%的把握认为AB有关系
故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=1+x﹣ + ﹣…+ + ,则下列结论正确的是(
A.f(x)在(0,1)上恰有一个零点
B.f(x)在(0,1)上恰有两个零点
C.f(x)在(﹣1,0)上恰有一个零点
D.f(x)在(﹣1,0)上恰有两个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系原点O为极点,以x轴非负半轴为极轴,以平面直角坐标系的长度单位为长度单位建立极坐标系.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=4cosθ
(Ⅰ) 求曲线C的直角坐标方程;
(Ⅱ) 设直线l与曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a>0,b>0(
A.若lna+2a=lnb+3b,则a>b
B.2a+2a=2b+3b,则a<b
C.若lna﹣2a=lnb﹣3b,则a>b
D.2a﹣2a=2b﹣3b,则a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的图象上相邻两个最高点的距离为π.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式|2x﹣1|<1的解集为M,a∈M,b∈M
(1)试比较ab+1与a+b的大小
(2)设max表示数集A的最大数,h=max{ },求证h≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一颗骰子先后抛掷2次,观察向上的点数,求:

(1)两数之和为5的概率;

(2)两数中至少有一个奇数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx+cosωx的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若f(+)= , θ∈(0,),求sin2θ.

查看答案和解析>>

同步练习册答案