精英家教网 > 高中数学 > 题目详情

(13分)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直, 
是等腰直角三角形,AB=AE,FA=FE,∠AEF=45°
(1)求证:EF⊥平面BCE;
(2)设线段CD的中点为P,在直线AE上是否存在一点M,使得PM//平面BCE?若存在,请指出点M的位置,并证明你的结论;若不存在,请说明理由。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
六棱台的上、下底面均是正六边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长为13 cm,求它的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知平面平面,△为等边三角形,边长为2a,的中点.
(1)求证:平面
(2)求证:平面平面
(3)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.

(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题満分12分)
如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.
(Ⅰ)证明AD⊥D1F;
(Ⅱ)求AE与D1F所成的角;
(Ⅲ)证明面AED⊥面A1FD1;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)平面EFGH分别平行空间四边形ABCD中的CD与AB且交BD、AD、
AC、BC于E、F、G、H.CD=a,AB=b,CD⊥AB.
(1)求证EFGH为矩形;
(2)点E在什么位置,SEFGH最大?

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

三棱锥中,两两垂直且相等,点分别是线段上移动,且满足,则所成角余弦值的取值范围是(    )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线的方向向量为,平面的法向量为,则能使//的是(    )

A.==
B.==
C.==
D.==

查看答案和解析>>

同步练习册答案