精英家教网 > 高中数学 > 题目详情
(1)选修4-2:矩阵与变换
在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=
k0
01
,N=
01
10
,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
分析:先计算MN,再求点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1的坐标,利用△A1B1C1的面积是△ABC面积的2倍,可求k的值.
解答:解:(1)由题设得MN=
0k
10

MN=
0k
10
 
0-2-2
001
=
00k
0-2-2

可知A1(0,0)、B1(0,-2)、C1(k,-2)
计算得△ABC面积的面积是1,△A1B1C1的面积是k的绝对值,则由题设可知:k的值为2或-2.
点评:本题主要考查矩阵变换的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:江苏省丹阳市08-09学年高二下学期期末测试(理) 题型:解答题

 (本题是选做题,满分28分,请在下面四个题目中选两个作答,每小题14分,多做按前两题给分)

A.(选修4-1:几何证明选讲)

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PBAC于点E,交⊙O于点D,若PEPAPD=1,BD=8,求线段BC的长.

 

 

 

 

 

 

B.(选修4-2:矩阵与变换)

在直角坐标系中,已知椭圆,矩阵阵,求在矩阵作用下变换所得到的图形的面积.

C.(选修4-4:坐标系与参数方程)

直线(为参数,为常数且)被以原点为极点,轴的正半轴为极轴,方程为的曲线所截,求截得的弦长.

D.(选修4-5:不等式选讲)

,求证:.

 

 

 

 

 

查看答案和解析>>

同步练习册答案