精英家教网 > 高中数学 > 题目详情

如图,圆锥中,为底面圆的两条直径 ,AB交CD于O,且的中点.

(1)求证:平面
(2)求圆锥的表面积;求圆锥的体积。
(3)求异面直线所成角的正切值 .

(1)连结分别为的中点,平面(2)表面积为,体积为(3)

解析试题分析:(1)连结,                               1分
分别为的中点,,        2分
平面.  4分(表述缺漏扣1分)
(2),              5分,
,      6分
         8分
(3)为异面直线所成角. …9分
,, 10分
.在中,, 11分

异面直线所成角的正切值为.            12分
考点:线面平行的判定,锥体体积及异面直线所成角
点评:证明线面平行可证明直线与平面内的一条直线平行,即转化为线线平行,求异面直线所成角时首先将异面直线平移为相交直线,常通过中位线等产生的平行关系实现平移,找到所求角进而解三角形得到角的大小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
 
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-ABC的侧面AACC与底面ABC垂直,AB=BC=CA=4,且AA⊥AC,AA=AC.

(Ⅰ)证明:AC⊥BA
(Ⅱ)求侧面AABB与底面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正方形ABCD中,点O是对角线AC的中点,点P是对角线AC上一动点.
(1)如图1,当点P在线段OA上运动时(不与点AO重合) ,PEPB交线段CD于点EPFCD于点E

①判断线段DFEF的数量关系,并说明理由;
②写出线段PCPACE之间的一个等量关系,并证明你的结论;
(2)如图2,当点P在线段OC上运动时(不与点OC重合),PEPB交直线CD于点EPFCD于点E.判断(1)中的结论①、②是否成立?若成立,说明理由;若不成立,写出相应的结论并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)如图所示,三棱柱A1B1C1—ABC的三视图中,正(主)视图和侧(左)视图是全等的矩形,俯视图是等腰直角三角形,点M是A1B1的中点.

(1)求证:B1C∥平面AC1M;
(2)求证:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,四棱锥中,底面为矩形,平面,点分别是的中点.

求证:平面
, 四棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

图1是一个正方体的表面展开图,MN和PB是两条面对角线,请在图2的正方体中将MN和PB画出来,并就这个正方体解决下列问题

(1) 求证:MN//平面PBD; (2)求证:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分11分)
如图示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的侧面积与体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题8分)如图所示,在正三棱柱中,若中点。

(1)证明:平面
(2)求所成的角的大小。

查看答案和解析>>

同步练习册答案