精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)的部分图象如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为-1.(写过程)

分析 根据图象的平移即可得到t的值.

解答 解:由图象可知,-2<f(x)<4的解集为(0,3),
不等式-2<f(x+t)<4的解集为(-1,2),
∴y=f(x+t)的图象是由y=f(x)的图象向右平移1个单位得到的,
∴t=-1,
故答案为:-1.

点评 本题考查了图象的平移和图象的识别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥1}\\{-x+y≤1}\\{2x-y≤2}\end{array}\right.$.
(1)求目标函数z=$\frac{1}{2}x$-y+$\frac{1}{2}$的最值;
(2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.
(3)求点P(x,y)到直线y=-x-2的距离的最大值;
(4)z=x2+y2-10y+25的最小值;
(5)z=$\frac{2y+1}{x+1}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在复平面内,复数$\frac{2}{1-i}$+2i2对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知以点C(a,$\frac{2}{a}$)(a>0)为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M,N,若OM=ON,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在R上的奇函数,当X≥0时,f(x)=2x-1.
(1)求当x<0时,f(x)的解析式;
(2)若f(x)≤5,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.关于直线1和平面α,β,有如下三个命题:
①若直线l与平面α内的任意一条直线都没有公共点,则1∥α;
②若平面α内的任意一条直线与平面β都没有公共点,则α∥β;
③若直线1与平面α内的任意一条直线都垂直,则l⊥α.
在上述三个命题中,正确命题的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合A={x∈N|-1<x<3},B={2},B⊆M⊆A,则满足条件的集合M的个数4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点,若△ABF1为正三角形,求椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点为F1,F2,P为椭圆上一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最小值是2c2,其中$c=\sqrt{{a^2}-{b^2}}$.则椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案