精英家教网 > 高中数学 > 题目详情
如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.
(1)见解析    (2)
解:(1)证明:连接AC1交A1C于点O,连接OD.

∵在?ACC1A中,O为AC1的中点,D为AB的中点,∴OD∥BC1,又BC1?平面A1CD,OD?平面A1CD,∴BC1∥平面A1CD.
(2)在正三角形ABC中,D为AB的中点,则CD⊥AB,
又∵平面ABC⊥平面ABB1A1
∴CD⊥平面ABB1A1
∴CD为三棱锥D-A1B1C的高,

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,所在平面互相垂直,且,E、F、G分别为AC、DC、AD的中点.
(1)求证:平面BCG;
(2)求三棱锥D-BCG的体积.
附:椎体的体积公式,其中S为底面面积,h为高.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,三棱柱ABC-A′B′C′的所有棱长都相等,侧棱与底面垂直,M是侧棱BB′的中点,则二面角M-AC-B的大小为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两条直线m,n,两个平面α,β.给出下面四个命题:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β.
其中正确命题的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点E、F、G分别是正方体ABCD-A1B1C1D1的棱AB、BC、B1C1的中点,如图所示,则下列命题中的真命题是________(写出所有真命题的编号).

①以正方体的顶点为顶点的三棱锥的四个面中最多只有三个面是直角三角形;
②过点F、D1、G的截面是正方形;
③点P在直线FG上运动时,总有AP⊥DE;
④点Q在直线BC1上运动时,三棱锥A-D1QC的体积是定值;
⑤点M是正方体的平面A1B1C1D1内的到点D和C1距离相等的点,则点M的轨迹是一条线段.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

二面角为60°,A、B是棱上的两点,AC、BD分别在半平面内,,且AB=AC=,BD=,则CD的长为(  )
A.         B.        C.             D.

查看答案和解析>>

同步练习册答案