精英家教网 > 高中数学 > 题目详情
13.设函数f(x)是定义在R上的奇函数,则下列结论中一定正确的是(  )
A.函数f(x)+x2是奇函数B.函数f(x)+|x|是偶函数
C.函数x2f(x)是奇函数D.函数|x|f(x)是偶函数

分析 根据函数奇偶性的定义进行判断即可.

解答 解:∵函数f(x)是定义在R上的奇函数,
∴f(-x)=-f(x),
A.f(-x)+(-x)2=-f(x)+x2,则函数不是奇函数.故A错误,
B.f(-x)+|-x|=-f(x)+|x|,则函数不是奇函数.故B错误,
C.(-x)2f(-x)=-x2f(x)为奇函数,满足条件.故C正确,
D.|-x|f(-x)=-|x|f(x)为奇函数,故D错误,
故选:C

点评 本题主要考查函数奇偶性的判断,根据奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=sin(ωx+φ),x∈R(其中ω>0,-π<φ<π)的部分图象,如图所示.那么f(x)的解析式为(  )
A.$f(x)=sin(x+\frac{π}{2})$B.$f(x)=sin(x-\frac{π}{2})$C.$f(x)=sin(2x+\frac{π}{2})$D.$f(x)=sin(2x-\frac{π}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.
(1)若f(x)=x+$\frac{1}{x}$,x∈[$\frac{1}{2}$,2],证明:f(x)在[$\frac{1}{2}$,2]上“$\frac{1}{2}$阶线性近似”;
(2)若f(x)=x2在[-1,2]上“k阶线性近似”,求实数k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若偶函数f(x)满足f(x+π)=f(x),且f(-$\frac{π}{3}$)=$\frac{1}{2}$,则f($\frac{2017π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xoy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{2}cost\\ y=-1+\sqrt{2}sint\end{array}\right.$,(t为参数),在以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为$ρcos({θ+\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,A,B两点的极坐标为$({1,\frac{π}{2}}),({1,π})$.
(1)求圆C的普通方程和直线L的直角坐标方程;
(2)点P是圆C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算($\frac{125}{27}$)${\;}^{-\frac{1}{3}}$+lg$\frac{1}{4}$-lg25=-$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,$b=\sqrt{13}$.
(1)若3sinC=4sinA,求c的值;
(2)求a+c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.焦点在x轴上,长、短半轴长之和为10,焦距为$4\sqrt{5}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{6}+\frac{y^2}{4}=1$B.$\frac{x^2}{16}+\frac{y^2}{36}=1$C.$\frac{x^2}{36}+\frac{y^2}{16}=1$D.$\frac{x^2}{49}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两条不同直线m、l,两个不同平面α、β,下列命题正确的是(  )
A.若l∥α,则l平行于α内的所有直线B.若m?α,l?β且l⊥m,则α⊥β
C.若l?β,l⊥α,则α⊥βD.若m?α,l?β且α∥β,则m∥l

查看答案和解析>>

同步练习册答案