精英家教网 > 高中数学 > 题目详情
15.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径$r=\root{3}{10}$毫米,滴管内液体忽略不计.如果瓶内的药液恰好156分钟滴完,则每分钟应滴下75滴.

分析 设每分钟滴下k(k∈N*)滴,由圆柱的体积公式求出瓶内液体的体积,再求出k滴球状液体的体积,得到156分钟所滴液体体积,由体积相等得到k的值.

解答 解:设每分钟滴下k(k∈N*)滴,
则瓶内液体的体积${V}_{1}=π•{4}^{2}•9+π•{2}^{2}•3$=156πcm3
k滴球状液体的体积${V}_{2}=k•\frac{4}{3}π•10$=$\frac{40}{3}kπ$mm3=$\frac{kπ}{75}$cm3
∴156π=$\frac{kπ}{75}$×156,解得k=75,
故每分钟应滴下75滴.
故答案为:75.

点评 本题考查简单的数学建模思想方法,解答的关键是对题意的理解,然后正确列出体积相等的关系式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知△ABC中,A(-4,3),B(2,2),C(-1,8),求向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CA}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)为定义在R上的可导函数,下列命题:
①若y=f(x)是奇函数,且在(0,+∞)上单调递增,则当x<0时,f(x)<0;
②若对任意的x>0,都有f(x)<f(0),则函数y=f(x)在[0,+∞)上一定是减函数;
③“函数y=|f(x)|的图象关于y轴对称”是“y=f(x)为奇函数”的必要不充分条件;
④若存在xi∈[a,b](1≤i≤n;n≥2;i,n∈N+),当x1<x2<x3<…<xn时,有f(x1)<f(x2)<f(x3)<…<f(xn),则函数y=f(x)在区间[a,b]上是单调递增;
⑤若?x0∈(a,b)使f′(x0)=0,且f′(a)f′(b)<0,则x=x0为函数y=f(x)的一个极值点.
其中正确命题的序号为①③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,ABCD为空间四边形,点E,F分别是AB,BC的中点,点G,H分别在CD,AD上,且DH=$\frac{1}{3}$AD,DG=$\frac{1}{3}$CD.
求:(1)判断EFGH的形状;
(2)证明直线EH,FG必相交于一点,且这个交点在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z满足($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)•z=1+i(其中i为虚数单位),则|z|为(  )
A.2B.$\sqrt{2}$C.2($\sqrt{3}$+1)D.2($\sqrt{3}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\frac{sinx}{x}$,在下列四个命题中:
①f(x)是奇函数;
②对定义域内任意x,f(x)<1恒成立;
③当$x=\frac{3π}{2}$时,f(x)取极小值;
④f(2)>f(3),
正确的是:②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=ax-1+logax在区间[1,2]上的最大值和最小值之和为a,则实数a为(  )
A.$\frac{1}{2}$B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.三棱锥P-ABC中,∠APB=∠BPC=∠CPA=90°,M在△ABC内,∠MPA=∠MPB=60°,则∠MPC=45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若x<2,则$\sqrt{{x}^{2}-4x+4}$-|3-x|的值是.

查看答案和解析>>

同步练习册答案