¾«Ó¢¼Ò½ÌÍøÒ»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn£¨n¡Ý4£©¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf£¨i£¬j£©£®
£¨1£©ÈôÊý±íÖеÚi £¨1¡Üi¡Ün-3£©ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»
£¨2£©ÒÑÖªf£¨1£¬j£©=4j£¬Çóf£¨i£¬1£©¹ØÓÚiµÄ±í´ïʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬bi=
1
aiai+1
£¬ÊÔÇóÒ»¸öº¯Êýf£¨x£©£¬Ê¹µÃSn=b1g£¨1£©+b2g£¨2£©+¡­+bng£¨n£©£¼
1
3
£¬ÇÒ¶ÔÓÚÈÎÒâµÄm¡Ê£¨
1
4
£¬
1
3
£©£¬¾ù´æÔÚʵÊý¦Ë?£¬Ê¹µÃµ±n£¾?¦Ëʱ£¬¶¼ÓÐSn£¾m£®
·ÖÎö£º£¨1£©Ò×ÖªÊý±íÖеÚi+1ÐеÄÊýÒÀ´ÎËù×é³ÉÊýÁеÄͨÏîΪf£¨i+1£¬j£©£¬ÔÙÓɵȲîÊýÁж¨ÒåÖ¤Ã÷£»
£¨2£©f£¨1£¬j£©=4jÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ¿ÉÇó½â£»
£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai½ø¶øÇóµÃbi£¬Áîg£¨i£©=2i£¬ÇóµÃsn·ÅËõ̽Çó£®
½â´ð£º½â£º£¨1£©Êý±íÖеÚi+1ÐеÄÊýÒÀ´ÎËù×é³ÉÊýÁеÄͨÏîΪf£¨i+1£¬j£©£¬
ÔòÓÉÌâÒâ¿ÉµÃf£¨i+1£¬j+1£©-f£¨i+1£¬j£©
=[f£¨i£¬j+1£©+f£¨i£¬j+2£©]-[f£¨i£¬j£©+f£¨i£¬j+1£©]
=f£¨i£¬j+2£©-f£¨i£¬j£©=2d£¨ÆäÖÐdΪµÚiÐÐÊýËù×é³ÉµÄÊýÁеĹ«²î£©£¨4·Ö£©

£¨2£©¡ßf£¨1£¬j£©=4j
¡àµÚÒ»ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÓÉ£¨1£©Öª£¬µÚ2ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ¬ÒÀ´ËÀàÍÆ£¬
¿ÉÖªÊý±íÖÐÈÎÒ»ÐеÄÊý£¨²»ÉÙÓÚ3¸ö£©¶¼ÒÀ´Î³ÉµÈ²îÊýÁУ®
ÉèµÚiÐеÄÊý¹«²îΪdi£¬Ôòdi+1=2di£¬Ôòdi=d1¡Á2i-1=4¡Á2i-1=2i+1
ËùÒÔf£¨i£¬1£©=f£¨i-1£¬1£©+f£¨i-1£¬2£©=2f£¨i-1£¬1£©+2i
=2[2f£¨i-2£¬1£©+2i-1]+2i=22f£¨i-2£¬1£©+2¡Á2i
=2i-1f£¨1£¬1£©+£¨i-1£©¡Á2i=2i-1¡Á4+£¨i-1£©¡Á2i=2i+1+£¨i-1£©¡Á2i=£¨i+1£©¡Á2i£¨10·Ö£©

£¨3£©ÓÉf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬¿ÉµÃai=
f(i£¬1)
i+1
+1=2i+1

ËùÒÔbi=
1
aiai+1
=
1
(2i+1)(2i+1+1)
=
1
2i
(
1
2i+1
-
1
2i+1+1
)

Áîg£¨i£©=2i£¬Ôòbig(i)=
1
2i+1
-
1
2i+1+1
£¬ËùÒÔSn=
1
3
-
1
2n+1+1
£¼
1
3

ҪʹµÃSn£¾m£¬¼´
1
3
-
1
2n+1+1
£¾m
£¬Ö»Òª
1
2n+1+1
£¼
1
3
-m
=
1-3m
3
£¬
¡ßm¡Ê(
1
3
£¬
1
4
)
£¬¡à0£¼1-3m£¼
1
4
£¬ËùÒÔÖ»Òª2n+1+1£¾
3
1-3m
£¬
¼´Ö»Òªn£¾log2(
3
1-3m
-1)-1
£¬ËùÒÔ¿ÉÒÔÁî¦Ë=log2(
3
1-3m
-1)-1

Ôòµ±n£¾¦Ëʱ£¬¶¼ÓÐSn£¾m£®ËùÒÔÊʺÏÌâÉèµÄÒ»¸öº¯ÊýΪg£¨x£©=2x£¨16·Ö£©
µãÆÀ£º±¾Ìâͨ¹ýÊý±í¿¼²éµÈ²îÊýÁеÄͨÏʽ¼°¶¨Ò壮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÑïÖÝÖÐѧ¸ßÒ»ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧ ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö16·Ö£© Ò»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn(n¡Ý4)¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf(i,j)£®

(1)ÈôÊý±íÖеÚi (1¡Üi¡Ün£­3)ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»
(2)ÒÑÖªf(1,j)=4j£¬Çóf(i,1)¹ØÓÚiµÄ±í´ïʽ£»
(3)ÔÚ(2)µÄÌõ¼þÏ£¬Èôf(i,1)=(i+1)(ai£­1)£¬bi= £¬ÊÔÇóÒ»¸öº¯Êýg(x)£¬Ê¹µÃ
Sn=b1g(1)+b2g(2)+¡­+bng(n)£¼£¬ÇÒ¶ÔÓÚÈÎÒâµÄm¡Ê(,)£¬¾ù´æÔÚʵÊý£¬Ê¹µÃµ±Ê±£¬¶¼ÓÐSn >m.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÑïÖÝÖÐѧ¸ßÒ»ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧ ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö16·Ö£© Ò»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn(n¡Ý4)¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf(i,j)£®

(1)ÈôÊý±íÖеÚi (1¡Üi¡Ün£­3)ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»

(2)ÒÑÖªf(1,j)=4j£¬Çóf(i,1)¹ØÓÚiµÄ±í´ïʽ£»

(3)ÔÚ(2)µÄÌõ¼þÏ£¬Èôf(i,1)=(i+1)(ai£­1)£¬bi= £¬ÊÔÇóÒ»¸öº¯Êýg(x)£¬Ê¹µÃ

Sn=b1g(1)+b2g(2)+¡­+bng(n)£¼£¬ÇÒ¶ÔÓÚÈÎÒâµÄm¡Ê(,)£¬¾ù´æÔÚʵÊý£¬Ê¹µÃµ±Ê±£¬¶¼ÓÐSn >m.

 

 

 

 

 

 

 

 

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨±¾Ð¡ÌâÂú·Ö16·Ö£© Ò»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn(n¡Ý4)¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf(i,j)£®

(1)ÈôÊý±íÖеÚi (1¡Üi¡Ün£­3)ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»

(2)ÒÑÖªf(1,j)=4j£¬Çóf(i,1)¹ØÓÚiµÄ±í´ïʽ£»

(3)ÔÚ(2)µÄÌõ¼þÏ£¬Èôf(i,1)=(i+1)(ai£­1)£¬bi= £¬ÊÔÇóÒ»¸öº¯Êýg(x)£¬Ê¹µÃ

Sn=b1g(1)+b2g(2)+¡­+bng(n)£¼£¬ÇÒ¶ÔÓÚÈÎÒâµÄm¡Ê(,)£¬¾ù´æÔÚʵÊý£¬Ê¹µÃµ±n£¾ʱ£¬¶¼ÓÐSn >m.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄê½­ËÕÊ¡ÑïÖÝÖÐѧ¸ßÒ»£¨Ï£©ÆÚÄ©ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Ò»¸öÈý½ÇÐÎÊý±í°´ÈçÏ·½Ê½¹¹³É£ºµÚÒ»ÐÐÒÀ´ÎдÉÏn£¨n¡Ý4£©¸öÊý£¬ÔÚÉÏÒ»ÐеÄÿÏàÁÚÁ½ÊýµÄÖмäÕýÏ·½Ð´ÉÏÕâÁ½ÊýÖ®ºÍ£¬µÃµ½ÏÂÒ»ÐУ¬ÒÀ´ËÀàÍÆ£®¼ÇÊý±íÖеÚiÐеĵÚj¸öÊýΪf£¨i£¬j£©£®
£¨1£©ÈôÊý±íÖеÚi £¨1¡Üi¡Ün-3£©ÐеÄÊýÒÀ´Î³ÉµÈ²îÊýÁУ¬
ÇóÖ¤£ºµÚi+1ÐеÄÊýÒ²ÒÀ´Î³ÉµÈ²îÊýÁУ»
£¨2£©ÒÑÖªf£¨1£¬j£©=4j£¬Çóf£¨i£¬1£©¹ØÓÚiµÄ±í´ïʽ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Èôf£¨i£¬1£©=£¨i+1£©£¨ai-1£©£¬bi=£¬ÊÔÇóÒ»¸öº¯Êýf£¨x£©£¬Ê¹µÃSn=b1g£¨1£©+b2g£¨2£©+¡­+bng£¨n£©£¼£¬ÇÒ¶ÔÓÚÈÎÒâµÄm¡Ê£¨£¬£©£¬¾ù´æÔÚʵÊý¦Ë?£¬Ê¹µÃµ±n£¾?¦Ëʱ£¬¶¼ÓÐSn£¾m£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸