精英家教网 > 高中数学 > 题目详情
设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)以F1、F2为左、右焦点,离心率e=
1
2
,一个短轴的端点(0,
3
);抛物线C2:y2=4mx(m>0),焦点为F2,椭圆C1与抛物线C2的一个交点为P.
(1)求椭圆C1与抛物线C2的方程;
(2)直线l经过椭圆C1的右焦点F2与抛物线C2交于A1,A2两点,如果弦长|A1A2|等于△PF1F2的周长,求直线l的斜率.
分析:(1)由离心率、短轴的端点坐标、及a2=b2+c2求得a,b的值,求得椭圆的方程.由抛物线的焦点坐标求得m的值,进一步得到抛物线方程;
(2)由于△PF1F2周长为 2a+2c=6,故弦长|A1A2|=6,用点斜式设出直线L的方程,代入抛物线方程化简,得到根与系数的关系,代入弦长公式求出斜率k的值.
解答:解:(1)由椭圆的离心率e=
c
a
=
1
2
,得
c2
a2
=
a2-b2
a2
=
1
4
,∴a2=
4
3
b2

b=
3
,∴a2=4,则a=2,c=1.
∴椭圆C1的方程为:
x2
4
+
y2
3
=1

抛物线C2的焦点为(1,0),∴m=1,则抛物线方程为:y2=4x;
(2)由于△PF1F2周长为 2a+2c=6,故弦长|A1A2|=6,
设直线l的斜率为k,则直线l的方程为 y-0=k(x-1),
代入抛物线C2:y2=4x,化简得 k2x2-(2k2+4)x+k2=0,
x1+x2=
2k2+4
k2
x1x2=1

∴|A1A2|=
1+k2
(x1+x2)2-4x1x2

=
(1+k2)[(
2k2+4
k2
)2-4]
=6,解得:k=±
2

故直线l的斜率为:±
2
点评:本题考查了椭圆的标准方程及抛物线的标准方程求法,考查了直线与圆锥曲线的位置关系,训练了设而不求的解题思想方法和数学转化思想方法,考查了学生的计算能力,是高考试卷中的压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:y=x2-1与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,-
4
5
),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆 C1
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点与抛物线 C2x2=4
3
y
 的焦点重合,F1,F2分别是椭圆的左、右焦点,离心率 e=
1
2
,过椭圆右焦点 F2的直线 l 与椭圆 C 交于 M,N 两点.
(1)求椭圆C的方程;
(2)是否存在直线 l,使得 
OM
ON
=-2
,若存在,求出直线 l 的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)设椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一个顶点与抛物线C2x2=4
2
y
的焦点重合,F1、F2分别是椭圆的左、右焦点,离心率e=
3
3
,过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(I)求椭圆C的方程;
(Ⅱ)是否存在直线l,使得
OM
ON
=-1
,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案