精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)证明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.

【答案】
(1)证明:∵BC=CD,即△BCD为等腰三角形,

又AC平分∠BCD,故AC⊥BD,

∵平面PAC⊥底面ABCD,平面PAC∩底面ABCD=AC,

∴BD⊥平面PAC,

∵CP平面PAC,∴CP⊥BD


(2)解:如图,记BD交AC于点E,作PO⊥AC于点O,

则PO⊥底面ABCD,

∵AP=PC=2 ,AC=4,∴∠APC=90°,PO=2,

则EC=CDcos60°=1,ED=CDsin60°=

以O为坐标原点,平行于DB的直线为x轴,OC所在直线为y轴,OP所在直线为z轴建立空间直角坐标系,

则A(0,﹣2,0),B( ,1,0),C(0,2,0),P(0,0,2),

设平面PAB的一个法向量为 ,则 ,取z=1,则

设平面PBC的一个法向量为 ,则 ,取z=1,则

∴cos< >= = =

∴二面角A﹣BP﹣C的余弦值为


【解析】(1)推导出AC⊥BD,由平面PAC⊥底面ABCD,得BD⊥平面PAC,由此能证明CP⊥BD;(2)作PO⊥AC于点O,则PO⊥底面ABCD,以O为坐标原点,平行于DB的直线为x轴,OC所在直线为y轴,OP所在直线为z轴建立空间直角坐标系,求出所用点的坐标,求得平面PAB与平面PBC的一个法向量,由两法向量所成角的余弦值可得二面角A﹣BP﹣C的余弦值.
【考点精析】本题主要考查了直线与平面垂直的性质的相关知识点,需要掌握垂直于同一个平面的两条直线平行才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足sin = =6.
(1)求△ABC的面积;
(2)若c+a=8,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx,g(x)= +x﹣a(a∈R). (Ⅰ)若直线x=m(m>0)与曲线y=f(x)和y=g(x)分别交于M,N两点.设曲线y=f(x)在点M处的切线为l1 , y=g(x)在点N处的切线为l2
(ⅰ)当m=e时,若l1⊥l2 , 求a的值;
(ⅱ)若l1∥l2 , 求a的最大值;
(Ⅱ)设函数h(x)=f(x)﹣g(x)在其定义域内恰有两个不同的极值点x1 , x2 , 且x1<x2 . 若λ>0,且λlnx2﹣λ>1﹣lnx1恒成立,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2 =1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.
(1)求证:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若存在x∈N*使得f(x)≤2成立,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几个月前,成都街头开始兴起“mobike”、“ofo”等共享单车,这样的共享单车为很多市民解决了最后一公里的出行难题,然而,这种模式也遇到了一些让人尴尬的问题,比如乱停乱放,或将共享单车占为“私有”等. 为此,某机构就是否支持发展共享单车随机调查了50人,他们年龄的分布及支持发展共享单车的人数统计如表:

年龄

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

受访人数

5

6

15

9

10

5

支持发展
共享单车人数

4

5

12

9

7

3


(1)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.1的前提下,认为年龄与是否支持发展共享单车有关系;

年龄低于35岁

年龄不低于35岁

合计

支持

不支持

合计


(2)若对年龄在[15,20)[20,25)的被调查人中随机选取两人进行调查,记选中的4人中支持发展共享单车的人数为X,求随机变量X的分布列及数学期望. 参考数据:

P(K2≥k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:K2= ,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4;坐标系与参数方程 已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

查看答案和解析>>

同步练习册答案