精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前n项和为Sn=(a+1)n2+a,某三角形三边之比为a2:a3:a4,则该三角形最大角为
 
分析:根据等差数列的性质分别求出a1,a2,进而表示出等差数列的公差d,由首项和公差表示出等差数列的前n项和公式,与已知的前n项和相等即可求出a的值,得到三角形三边之比,设三角形的最大角为α,然后由余弦定理即可求出cosα的值,由α的范围,利用特殊角的三角函数值即可求出三角形最大角α的度数.
解答:解:令n=1,得到a1=S1=2a+1,令n=2,得到a1+a2=S2=5a+4,
所以a2=3a+3,故公差d=(3a+3)-(2a+1)=a+2,
所以Sn=n(2a+1)+
n(n-1)
2
(a+2)=
a+2
2
n2+(2a+1-
a+2
2
)n=(a+1)n2+a,
得到a=0,所以等差数列的首项a1=1,公差d=2,
所以三角形三边之比为3:5:7,设最大的角为α,三边分别为3k,5k,7k,
所以cosα=
9k2+25k2-49k2
30k2
=-
1
2
,又α∈(0,180°),
则该三角形最大角α为120°.
故答案为:120°
点评:此题考查学生掌握等差数列的性质,灵活运用余弦定理及特殊角的三角函数值化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案