精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=alnx+1(a>0).
(1)当x>0时,求证:
(2)在区间(1,e)上f(x)>x恒成立,求实数a的范围.
(3)当 时,求证: (n∈N*).

【答案】
(1)证明:设

,则x=1,即φ(x)在x=1处取到最小值,

则φ(x)≥φ(1)=0,即原结论成立.


(2)解:由f(x)>x得alnx+1>x

则h(x)单调递增,所以h(x)>h(1)=0

∵h(x)>0,∴g'(x)>0,即g(x)单调递增,则g(x)的最大值为g(e)=e﹣1

所以a的取值范围为[e﹣1,+∞).


(3)证明:由第一问得知 ,则

=

=

=2n﹣

=2n﹣2( )=


【解析】(1)通过构造函数,利用导数研究函数的单调性、极值即可证明;(2)由f(x)>x得alnx+1>x,即 ,令 ,利用导数研究函数的单调性、极值及最大值即可;(3)由第一问得知 ,则 ,然后利用“累加求和”即可证明.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握不等式的证明(不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)函数,若的极值点,求的值并讨论的单调性;

(2)函数有两个不同的极值点,其极小值为为,试比较的大小关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中, .

1)若,求直线与平面所成角的正弦值;

2)若二面角的大小为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|2x﹣a|,g(x)= (a∈R),若0<a<12,且对任意t∈[3,5],方程f(x)=g(t)在x∈[3,5]总存在两不相等的实数根,求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.

(1)求曲线的方程;

(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点的垂线交于另一点,若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足:a3=4,a5+a7=14,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn= (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点F(0,﹣1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.若过F的动直线m交椭圆于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2 , Z的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.

(1)证明:PA∥平面BDE;
(2)求二面角B﹣DE﹣C的平面角的余弦值;
(3)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=m(x﹣2m)(x+m+3),g(x)=2x﹣2,若对于任一实数x,f(x)与g(x)至少有一个为负数,则实数m的取值范围是(
A.(﹣4,﹣1)
B.(﹣4,0)
C.(0,
D.(﹣4,

查看答案和解析>>

同步练习册答案