分析 先根据约束条件画出可行域,再利用几何意义求最值,z=x+3y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最值即可.
解答 解:变量x,y满足$\left\{\begin{array}{l}x-y-1≥0\\ x+y-3≥0\\ 2x+y-6≤0\end{array}\right.$画出图形:
目标函数z=x+3y化为:y=$-\frac{1}{3}x+\frac{1}{3}z$,
经过点B直线的焦距最小,此时z最小,即在点B处z有最小值,
由$\left\{\begin{array}{l}x+y-3=0\\ 2x+y-6=0\end{array}\right.$,可得x=3,y=0,则z=3.
故答案为:3.
点评 本题主要考查了简单的线性规划,将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解,是常用的一种方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{9}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com