精英家教网 > 高中数学 > 题目详情
1.如图,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,1),且离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆E的方程;
(2)若M点为右准线上一点,B为左顶点,连接BM交椭圆于N,求$\frac{MN}{NB}$的取值范围;
(3)经过点(1,1),且斜率为k的直线与椭圆E交于不同两点P,Q(均异于点A)证明:直线AP与AQ的斜率之和为定值.

分析 (1)运用离心率公式和a,b,c的关系,解方程可得a,进而得到椭圆方程;
(2)设P点横坐标为x0,则$\frac{MN}{NB}$=$\frac{2-{x}_{0}}{{x}_{0}+\sqrt{2}}$=$\frac{2+\sqrt{2}}{{x}_{0}+\sqrt{2}}-1$,由-$\sqrt{2}$<x0≤$\sqrt{2}$,可得$\frac{MN}{NB}$的取值范围;
(3)由题意设直线PQ的方程为y=k(x-1)+1(k≠0),代入椭圆方程$\frac{{x}^{2}}{2}$+y2=1,运用韦达定理和直线的斜率公式,化简计算即可得到结论.

解答 (1)解:由题意知$\frac{c}{a}=\frac{\sqrt{2}}{2}$,b=1,再由a2=b2+c2,解得$a=\sqrt{2}$,继而得椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)解:由(1)知,椭圆右准线方程为x=2,
设M点横坐标为x0,则$\frac{MN}{NB}$=$\frac{2-{x}_{0}}{{x}_{0}+\sqrt{2}}$=$\frac{2+\sqrt{2}}{{x}_{0}+\sqrt{2}}-1$,
∵-$\sqrt{2}$<x0≤$\sqrt{2}$,∴$\frac{2+\sqrt{2}}{{x}_{0}+\sqrt{2}}-1∈[\frac{\sqrt{2}-1}{2},+∞)$.
∴$\frac{MN}{NB}$的取值范围是[$\frac{\sqrt{2}-1}{2}$,+∞); 
(3)证明:设P(x1,y1),Q(x2,y2),x1x2≠0由题设知,直线PQ的方程为y=k(x-1)+1(k≠0),
代入 $\frac{{x}^{2}}{2}+{y}^{2}=1$,化简得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,则${x}_{1}+{x}_{2}=\frac{4k(k-1)}{1+2{k}^{2}},{x}_{1}{x}_{2}=\frac{2k(k-2)}{1+2{k}^{2}}$,
由已知△>0,从而直线AP与AQ的斜率之和${k}_{AP}+{k}_{AQ}=\frac{{y}_{1}+1}{{x}_{1}}+\frac{{y}_{2}+1}{{x}_{2}}=2k+(2-k)\frac{{x}_{1}+{x}_{2}}{{x}_{1}{x}_{2}}$
=2k+(2-k)$\frac{4k(k-1)}{2k(k-2)}$=2k-2(k-1)=2.
即有直线AP与AQ斜率之和为2.

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理求解.考查直线的斜率公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.设全集U=R,A={x|x<1},B={x|x>m},若∁UA⊆B,则实数m的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)若f(x+1)=2x-1(x>0),求f(x);
(2)已知一次函数f(x)满足f(f(x))=4x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={-1,0,1},N={x|x2-2x=0},则M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.以椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{25}$=1的焦点为顶点,以椭圆的顶点为焦点的双曲线方程为$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=\sqrt{x+3}+\sqrt{4-x}$的定义域为集合A,g(x)=lg(5-x)+lg(x+1)的定义域为集合B.设全集U=R,求A∩B及(∁UA)∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知两条直线(m+2)x+3my+1=0与(m-2)x+(m+2)y-3=0相互垂直,则m=-2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点P到左焦点距离为8,则P到右焦点距离为2或14;命题q:椭圆离心率越大,椭圆越趋近于圆.则下列命题中为真命题的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|1<x≤2},集合B={x|1≤x<3},则(∁RA)∩B={1}∪(2,3).

查看答案和解析>>

同步练习册答案