精英家教网 > 高中数学 > 题目详情
(1)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法是__________.

(2)从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,要把证明的结论归结为判定一个明显成立的条件为止,这种证明方法是__________.?

(3)假设原命题不成立,经过正确的推理,最后得出矛盾,说明假设错误,从而证明原命题成立,这种证明方法为__________.

  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知条件p:5x>a+1或5x<1-a(a≥0)和条件q:
12x2-3x+1
>0,请选取适当的非负数a的值,分别利用所给的两个条件作为A,B构造命题:“若A,则B”,并使得构造的原命题为真命题,而其逆命题为假命题,则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:|x-1|>a(a≥0)和条件q:lg(x2-3x+3)>0,
(1)求满足条件p,q的不等式的解集.
(2)分别利用所给的两个条件作为A,B构造命题:“若A,则B”,问是否存在非负实数a使得构造的原命题为真命题,而其逆命题为假命题,若存在,求出a的取值范围.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知条件p:|5x-1|>a(a>0)和条件q:
12x2-3x+1
>0
,请选取适当的实数a的值,分别利用所给的两个条件作为A、B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题.则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法是__________.

(2)从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,要把证明的结论归结为判定一个明显成立的条件为止,这种证明方法是__________.?

(3)假设原命题不成立,经过正确的推理,最后得出矛盾,说明假设错误,从而证明原命题成立,这种证明方法为__________.

      

查看答案和解析>>

同步练习册答案