精英家教网 > 高中数学 > 题目详情
17.分别用角度制、弧度制下的弧长公式,计算半径为1m的圆中,60°的圆心角所对的弧的长度 (可用计算器).

分析 根据题意可以利用扇形弧长公式l扇形直接计算.

解答 解:l扇形=$\frac{60×π×1}{180}$=$\frac{π}{3}$=1.047.
根据题意得出:60°=$\frac{π}{3}$,
l扇形=1×$\frac{π}{3}$=$\frac{π}{3}$=1.047,
半径为1,60°的圆心角所对弧的长度为=1.047m.

点评 此题主要考查了扇形弧长的计算,注意掌握扇形的弧长公式是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1的图象表示曲线C,则以下命题中
甲:曲线C为椭圆,则1<t<4;      乙:若曲线C为双曲线,则t>4或t<1;
丙:曲线C不可能是圆;            丁:曲线C表示椭圆,且长轴在x轴上,则1<t<$\frac{5}{2}$.
正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,已知b2+4c2=8,sinB+2sinC=6bsinAsinC,则△ABC的面积取最大值时有a2=$\frac{15-8\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求值:$\frac{\sqrt{1-2sin160°cos340°}}{cos200°+\sqrt{1-co{s}^{2}20°}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知cosα=-2sinα,求下列各式的值.
(1)$\frac{2sinα-cosα}{sinα+3cosα}$;
(2)sin2α+2sinαcosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知二次函数满足f(0)=-1,且对任意x都有f(x+1)=f(x)+2x+1,又g(x)=x+1.
(1)求f(x)的解析式;
(2)若当x∈[1,2]时,不等式f(x)≥t[g(x)-1]恒成立,求实数t的取值范围;
(3)设函数F(x)=$\frac{f(x)+1+a}{g(x)-1}$+b,若对任意a∈[$\frac{1}{2}$,2],不等式F(x)≤10在x∈[$\frac{1}{4}$,1]上恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若角α和角β的终边关于y轴对称,则必有(  )
A.α+β=90°B.α+β=k×90°+360°,k∈Z
C.α+β=k×360°,k∈ZD.α+β=(2k+1)•180°,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知U=R,集合A={x|0<x<4},B={x|1<x<7},求A∩B,A∪B,∁UA,∁UB.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{1-lo{g}_{2}(2-x)(x<2)}\\{{2}^{1-x}+\frac{3}{2}(x≥2)}\end{array}\right.$,则f(f(3))=3.

查看答案和解析>>

同步练习册答案