精英家教网 > 高中数学 > 题目详情
4.设a>0,函数f(x)定义域为R,且f(x+a)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,求证:f(x)为周期函数.

分析 根据已知中函数f(x)满足f(x+a)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,可得f(x)∈[0,1],当f(x)∈[0,$\frac{1}{2}$)时,可得f(x+4a)=f(x);当f(x)∈[$\frac{1}{2}$,1]时,可得f(x+4a)=f(x);进而根据周期性的定义得到结论.

解答 证明:∵函数f(x)满足f(x+a)=$\frac{1}{2}$+$\sqrt{f(x)-[f(x)]^{2}}$,
∴f(x)-[f(x)]2≥0,即f(x)∈[0,1],
若f(x)∈[0,$\frac{1}{2}$),则
∴f(x+2a)=f[(x+a)+a]=$\frac{1}{2}$+$\sqrt{f(x+a)-{[f(x+a)]}^{2}}$=$\frac{1}{2}$+$\sqrt{[\frac{1}{2}+\sqrt{f(x)-{[f(x)]}^{2}}]-[\frac{1}{2}+\sqrt{f(x)-{[f(x)]}^{2}}]^{2}}$=$\frac{1}{2}$+$\sqrt{{[f(x)]}^{2}-f(x)+\frac{1}{4}}$=$\frac{1}{2}$-f(x)+$\frac{1}{2}$=1-f(x),
∴f(x+4a)=1-f(x+2a)=1-(1-f(x))=f(x),
故f(x)是以4a为周期的周期函数;
若f(x)∈[$\frac{1}{2}$,1],
∴f(x+2a)=f[(x+a)+a]=$\frac{1}{2}$+$\sqrt{f(x+a)-{[f(x+a)]}^{2}}$=$\frac{1}{2}$+$\sqrt{[\frac{1}{2}+\sqrt{f(x)-{[f(x)]}^{2}}]-[\frac{1}{2}+\sqrt{f(x)-{[f(x)]}^{2}}]^{2}}$=$\frac{1}{2}$+$\sqrt{{[f(x)]}^{2}-f(x)+\frac{1}{4}}$=$\frac{1}{2}$+f(x)-$\frac{1}{2}$=f(x),
故f(x)是以2a为周期的周期函数.

点评 本题考查的知识点是函数的周期性,熟练掌握函数周期性的定义,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\sqrt{1+{2}^{x}+a•{4}^{x}}$
(1)若f(x)在区间(-∞,1]有意义,求实数a的取值范围;
(2)若f(x)的定义域是(-∞,1],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{2cos\frac{π}{3}x,x≤2000}\\{x-15,x>2000}\end{array}\right.$,则f[f(2015)]=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为(  )
A.α+45°
B.α-135°
C.135°-α
D.当0°≤α<135°时,为α+45°,当135°≤α<180°时,为α-135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若f(x)=$\frac{1}{2}$(x+|x|),则f(f(x))是(  )
A.x+|x|B.0C.$\left\{\begin{array}{l}{x,x≤0}\\{0,x>0}\end{array}\right.$D.$\left\{\begin{array}{l}{x,x≥0}\\{0,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,设点P,Q是线段AB的三等分点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,则$\overrightarrow{OP}$=$\frac{2}{3}\overrightarrow{a}$$+\frac{1}{3}\overrightarrow{b}$,$\overrightarrow{OQ}$=$\frac{1}{3}\overrightarrow{a}$$+\frac{2}{3}\overrightarrow{b}$(用$\overrightarrow{a}$,$\overrightarrow{b}$表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.二项式(x2-$\frac{2}{\sqrt{x}}$)5的展开式中常数项是(  )
A.-32B.32C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f(x)=$\left\{\begin{array}{l}{(x+1)^{2}\\;当x≤1}\\{\frac{1}{1-x}\\;当x>1}\end{array}\right.$,则f(f(x))=$\left\{\begin{array}{l}{({x}^{2}+2x+2)^{2},x≤1}\\{\frac{x-1}{x},x>1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在给出的以下四个函数中为减函数的是(  )
A.y=2x-5B.y=(x-1)2+3,x∈(1,+∞)C.y=$\frac{6}{x}$,x∈(1,+∞)D.y=-x2+4x,x∈(-∞,0)

查看答案和解析>>

同步练习册答案