精英家教网 > 高中数学 > 题目详情
已知实数a满足0<a≤2,a≠1,设函数f (x)=x3x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
解:(Ⅰ) 解: 当a=2时,f ′(x)=x2-3x+2=(x-1)(x-2).        
列表如下:

所以,f (x)极小值为f (2)=
(Ⅱ) 解:f ′(x)=x2-(a+1)x+a=(x-1)(x-a).
g ′(x)=3x2+2bx-(2b+4)+
令p(x)=3x2+(2b+3)x-1,  
(1) 当 1<a≤2时,f (x)的极小值点x=a,
则g(x)的极小值点也为x=a,
所以p(a)=0,即3a2+(2b+3)a-1=0,即b=
此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+
由于1<a≤2,故 2-
(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,
由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,
即p(1)=3+2b+3-1>0,故b>-
此时g(x)的极大值点x=x1
有 g(x1)=x13+bx12-(2b+4)x1+lnx1<1+bx12-(2b+4)x1
=(x12-2x1)b-4x1+1  (x12-2x1<0)<-(x12-2x1)-4x1+1
=-x12+x1+1=-(x1)2+1+   (0<x1<1)≤
综上所述,g(x)的极大值小于等于. 
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知实数a满足1<a<2,命题p:函数y=loga(2-ax)在[0,1]上是减函数,命题q:“|x|<1”是“x<a”的充分不必要条件,则下面说法正确的是

①p或q为真命题;②p且q为假命题;③非p且q为真命题;④非p或非q为真命题、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足0<a<2,直线l1:ax-2y-2a+4=0和l2:2x+a2y-2a2-4=0与两坐标轴围成一个四边形.
(1)求证:无论实数a如何变化,直线l1、l2必过定点.
(2)画出直线l1和l2在平面坐标系上的大致位置.
(3)求实数a取何值时,所围成的四边形面积最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

9、已知实数a、b满足3a=10b,下列5个关系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b.其中不可能成立的关系有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a、b满足3a=10b,下列5个关系式:①0<a<b;②0<b<a;③a<b<0;④b<a<0;⑤a=b=0,其中可能成立的关系有
②③⑤
②③⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数a满足0<a≤2,a≠1,设函数f (x)=
1
3
x3-
a+1
2
x2+ax.
(1)当a=2时,求f (x)的极小值;
(2)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
5
4

查看答案和解析>>

同步练习册答案