精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z

【答案】D
【解析】解:由函数f(x)=cos(ωx+)的部分图象,可得函数的周期为 =2( )=2,∴ω=π,f(x)=cos(πx+). 再根据函数的图象以及五点法作图,可得 += ,k∈z,即= ,f(x)=cos(πx+ ).
由2kπ≤πx+ ≤2kπ+π,求得 2k﹣ ≤x≤2k+ ,故f(x)的单调递减区间为( ,2k+ ),k∈z,
故选:D.
由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】综合题。
(1)已知直线l经过点P(4,1),且在两坐标轴上的截距相等,求直线l的方程;
(2)已知直线l经过点P(3,4),且直线l的倾斜角为θ(θ≠90°),若直线l经过另外一点(cosθ,sinθ),求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2+2x﹣3>0},集合B={x|x2﹣2ax﹣1≤0,a>0}.若A∩B中恰含有一个整数,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)xm=0},

若(UA)∩B,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求在区间的最值;

2)求实数的取值范围,使在区间上是单调函数;

3)当时,求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=﹣1,对任意x∈R都有f(x)≥x﹣1,且f(﹣ +x)=f(﹣ ﹣x).
(1)求函数f(x)的解析式;
(2)是否存在实数a,使函数g(x)=log [f(a)]x在(﹣∞,+∞)上为减函数?若存在,求出实数a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的值;

2)求的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设直线系M:xcosθ+(y﹣1)sinθ=1(0≤θ≤2π),对于下列说法:
(1)M中所有直线均经过一个定点;
(2)存在一个圆与所有直线不相交;
(3)对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上;
(4)M中的直线所能围成的正三角形面积都相等.
其中说法正确的是(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了测量山顶M的海拔高度,飞机沿水平方向在A,B两点进行测量,A,B,M在同一个铅垂面内(如图).能够测量的数据有俯角、飞机的高度和A,B两点间的距离.请你设计一个方案,包括:
(1)指出需要测量的数据(用字母表示,并在图中标出);
(2)用文字和公式写出计算山顶M海拔高度的步骤.

查看答案和解析>>

同步练习册答案