精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义域为上的奇函数,且.

(1)用定义证明:函数上是增函数;

(2)若实数t满足求实数t的范围.

【答案】1)见解析(20

【解析】

1)由函数是定义域为(﹣11)上的奇函数,求出b0,从而,利用定义法能证明函数fx)在(﹣11)上是增函数;

2)推导出f2t1)<f1t),由函数fx)在(﹣11)上是增函数,列出不等式组,由此能求出实数t的范围.

解:(1)∵函数是定义域为(﹣11)上的奇函数,

f00,∴b0

任取x1x2(﹣11),且x1x2

fx1)﹣fx2

a0,﹣1x1x21

x1x201x1x201010

∴函数fx)在(﹣11)上是增函数.

2)∵f2t1+ft1)<0,∴f2t1)<﹣ft1),

∵函数是定义域为(﹣11)上的奇函数,且a0

f2t1)<f1t),

∵函数fx)在(﹣11)上是增函数,

解得0t

故实数t的范围是(0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求证:函数有极值;

(2)若,且函数的图象有两个相异交点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线.

(1)将曲线上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线,请写出直线,和曲线的直角坐标方程;

(2)若直线经过点与曲线交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数上有最大值1,设

(1)求的值;

(2)若不等式上恒成立,求实数的取值范围;

(3)若函数有三个不同的零点,求实数的取值范围(为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆上一动点,过点轴,垂足为点,中点为

1)当在圆上运动时,求点的轨迹的方程

Ⅱ)过点的直线交于两点,当时,求线段的垂直平分线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数的图象经过点在区间的最小值

1)求函数的解析式;

2)求函数的最小值的表达式;

3)是否存在同时满足以下条件:;②当的定义域为时,值域为;若存在,求出mn的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,BC边上的高所在直线的方程为x+2y+3=0∠A的平分线所在直线的方程为y=0,若点B的坐标为(﹣1﹣2),分别求点A和点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知抛物线的顶点为,与轴的交点为,则直线称为抛物线的伴随直线.

(1)求抛物线的伴随直线的表达式;

(2)已知抛物线的伴随直线为,且该抛物线与轴有两个不同的公共点,求的取值范围.

(3)已知,若抛物线的伴随直线为,且该抛物线与线段恰有1个公共点,求的取值范围(直接写出答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

同步练习册答案