精英家教网 > 高中数学 > 题目详情
9.设x0是方程lnx+x=4的解,且x0∈(k,k+1)(k∈Z),求k的值为(  )
A.1B.2C.4D.0

分析 可先构造出函数f(x)=lnx+x-4,带入可得f(2)<0,f(3)>0,据此解答.

解答 解:设f(x)=lnx+x-4,则f(2)=ln2+2-4=ln2-2<0,
f(3)=ln3+3-4=ln3-1>0,所以x0属于区间(2,3).
k=2.
故选:B.

点评 本小题主要考查简单的构造函数求出函数零点的方法,注意灵活运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,讨论f(x)的单调性;
(Ⅲ)若对任意的a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是(  )
A.$[0,\frac{5}{2}]$B.[-1,4]C.$[-\frac{1}{2},2]$D.[-5,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设Sn是等差数列{an}的前n项和,若$\frac{a_7}{a_4}=\frac{7}{13}$,则$\frac{{{S_{13}}}}{S_7}$=(  )
A.1B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ•2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若函数g(x)在[0,2]上单调递减,求λ的取值范围;
(3)若函数g(x)的最大值是1,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos(2x+ϕ)(ϕ>0且为常数),下列命题错误的是(  )
A.不论ϕ取何值,函数f(x)的周期都是π
B.存在常数ϕ,使得函数f(x)是偶函数
C.不论ϕ取何值,函数f(x)在区间[$π-\frac{ϕ}{2},\frac{3π}{2}-\frac{ϕ}{2}$]都是减函数
D.函数f(x)的图象,可由函数y=cos2x的图象向右平移ϕ个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在单调递增数列{an}中,a1=2,不等式(n+1)an≥na2n对任意n∈N*都成立.
(1)求a2的取值范围.
(2)判断数列{an}能否为等比数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3(9x+1)-x.
(1)判断函数f(x)的奇偶性并证明;
(2)设函数g(x)=log3(a+2-$\frac{a+4}{{3}^{x}}$),若关于x的不等式f(x)≥g(x)对x∈[-1,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数g(x)=2x+5x的零点所在的一个区间是    (  )
A.(0,1)B.(1,2)C.(-1,0)D.(-2,-1)

查看答案和解析>>

同步练习册答案