精英家教网 > 高中数学 > 题目详情
如图,倾斜角为α的直线经过抛物线y2=8x的焦点F,且与抛物线交于A、B两点.
(1)求抛物线的焦点F的坐标及准线l的方程;
(2)若α为锐角,作线段AB的垂直平分线m交x轴于点P,证明|FP|-|FP|cos2α为定值,并求此定值.
分析:(1)根据抛物线的标准方程,可求抛物线的焦点F的坐标及准线l的方程;
(2)作AC⊥l,BD⊥l,垂足为C,D,求出|FA|,|FB|,即可得到结论.
解答:(1)解:设抛物线C:y2=2px(p>0),则2p=8,从而p=4
因此焦点F(2,0),准线方程为x=-2;
(2)证明:作AC⊥l,BD⊥l,垂足为C,D.

则由抛物线的定义,可得|FA|=|AC|,|FB|=|BD|
设A(x1,y1),B(x2,y2),则|FA|=|AC|=|FA|cosα+4,∴|FA|=
4
1-cosα

同理|FB|=
4
1+cosα

记直线m与AB的交点为E,则|FE|=|FA|-|AE|=|FA|-
|FA|+|FB|
2
=
1
2
(|FA|-|FB|)
=
4cosα
sin2α

∴|FP|=
|FE|
cosα
=
4
sin2α

∴|FP|-|FP|cos2α=
4
sin2α
(1-cos2α)=8.
点评:本题考查抛物线的几何性质,考查抛物线的定义,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,倾斜角为α的直线经过抛物线y2=4x的焦点,且与抛物线交于A、B两点,Q为A、B中点,
(1)求抛物线的焦点坐标及准线l方程;  
(2)若α≠
π2
,作线段AB的垂直平分线m交x轴于点P,证明:|AB|=2|PF|.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•安庆三模)如图,倾斜角为θ的直线OP与单位圆在第一象限的部分交于点P,单位圆与坐标轴交于点A(-1,0),点B(0,-1),PA与y轴交于点N,PB与x轴交于点M,设
PO
=x
PM
+y
PN
(x,y∈R)
(1)用角θ表示点M、点N的坐标;
(2)求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年重庆卷文)(12分)

如图,倾斜角为的直线经过抛物线的焦点F,且与抛物线交于A、B两点。

 

题(21)图

 

(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;

(Ⅱ)若为锐角,作线段AB的垂直平分线m交x轴于点P,

证明|FP||FP|cos2为定值,并求此定值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省安庆市高三模拟考试(三模)理科数学试卷(解析版) 题型:解答题

如图,倾斜角为的直线与单位圆在第一象限的部分交于点,单位圆与坐标轴交于点,点轴交于点轴交于点,设

(1)用角表示点、点的坐标;

(2)求的最小值.

 

查看答案和解析>>

同步练习册答案