精英家教网 > 高中数学 > 题目详情
(2010•广东模拟)已知a>0,b>0,函数f(x)=x2+(ab-a-4b)x+ab是偶函数,则f(x)的图象与y轴交点纵坐标的最小值为(  )
分析:根据函数f(x)为偶函数,可得a,b满足ab=a+4b,利用均值定理求出ab的最小值,而f(x)的图象与y轴交点纵坐标就是ab,所以可得f(x)的图象与y轴交点纵坐标的最小值.
解答:解:∵函数f(x)=x2+(ab-a-4b)x+ab是偶函数,∴ab-a-4b=0,
∴ab=a+4b,∵a>0,b>0,∴a+4b≥2
a•4b
=4
ab
,即ab≥4
ab

ab
=t,∴t2≥4t,t≥4,即
ab
≥4,ab≥16
令函数f(x)=x2+(ab-a-4b)x+ab中x=0,得,f(0)=ab,∴f(x)的图象与y轴交点纵坐标为ab,
∵ab≥4
ab
,∴f(x)的图象与y轴交点纵坐标的最小值为16.
故答案为A
点评:本题主要考查函数奇偶性的判断,以及利用均值定理求最值,属于函数性质与不等式的综合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•广东模拟)函数f(x)=cos(-
x
2
)+sin(π-
x
2
).x∈R
(1)求f(x)的周期;
(2)求f(x)在[0,π)上的减区间;
(3)若f(a)=
2
10
5
,a∈(0,
π
2
),求tan(2a+
π
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)设x、y、z是空间不同的直线或平面,对下列四种情形:
①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)函数y=e2x图象上的点到直线2x-4y-4=0距离的最小值是
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)如果(3x2-
2x3
)n
的展开式中含有非零常数项,则正整数n的最小值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)不等式1<|x+2|<5的解集是(  )

查看答案和解析>>

同步练习册答案