精英家教网 > 高中数学 > 题目详情
18.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为(  )
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

分析 先根据题意确定∠ACB的值,再由勾股定理可直接求得|AB|的值.

解答 解:根据题意,△ABC中,∠ACB=180°-20°-70°=90°
∵AC=akm,BC=2akm,
∴由勾股定理,得AB=$\sqrt{5}$akm,
即灯塔A与灯塔B的距离为$\sqrt{5}$akm,
故选:C.

点评 本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用勾股定理解三角形等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.执行如图所示的程序框图,输出的s值为(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正项数列{an}满足,a1=1,an+1=$\frac{{a}_{n}}{2{a}_{n}+1}$(n∈N+).
(1)证明数列{$\frac{1}{{a}_{n}}$}为等差数列,并求数列{an}的通项公式;
(2)设bn=(-1)n•n•an•an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知下列四个命题:p1:若f(x)=2x-2-x,则?x∈R,f(-x)=-f(x);p2:若函数$f(x)=\left\{\begin{array}{l}a{x^2}+1,x≥0\\({a+2}){e^{ax}},x<0\end{array}\right.$为R上的单调函数,则实数a的取值范围是(0,+∞);p3:若函数f(x)=xlnx-ax2有两个极值点,则实数a的取值范围是$({0,\frac{1}{2}})$;p4:已知函数f(x)的定义域为R,f(x)满足$f(x)=\left\{\begin{array}{l}{x^2}+2,x∈[{0,1})\\ 2-{x^2},x∈[{-1,0})\end{array}\right.$且f(x)=f(x+2),$g(x)=\frac{2x+5}{x+2}$,则方程f(x)=g(x)在区间[-5,1]上所有实根之和为-7.其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-kx+$\frac{2}{3}$=0恰有四个不相等的实数根,则实数k的取值范围是($\frac{2}{3}$,$\frac{\root{3}{{e}^{2}}}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线y=x+k与曲线y=ex相切,则k的值为(  )
A.eB.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx.
(Ⅰ)y=kx与f(x)相切,求k的值;
(Ⅱ)证明:当a≥1时,对任意x>0不等式f(x)≤ax+$\frac{a-1}{x}$-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平面内,一只蚂蚁从点A(-2,-3)出发,爬到y轴后又爬到圆(x+3)2+(y-2)2=2上,则它爬到的最短路程是(  )
A.5$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{26}$D.$\sqrt{26}$-$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,O∈AD,AD∥BC,AB⊥AD,AO=AB=BC=1,PO=$\sqrt{2}$,$PC=\sqrt{3}$.
(I)证明:平面POC⊥平面PAD;
(II)若CD=$\sqrt{2}$,三棱锥P-ABD与C-PBD的体积分别为V1、V2,求证V1=2V2

查看答案和解析>>

同步练习册答案