精英家教网 > 高中数学 > 题目详情

已知F、F为双曲线(a>0,b>0)的焦点,过F作垂直于x轴的直线交双曲线于点P,且∠PFF=30,求双曲线的渐近线方程。

双曲线的渐近线方程为y=±x


解析:

设F(c,0)(c>0),P(c,y),则,解得y

∴|P F|=

又∵在直角三角形P FF中,∠PFF=30 

解法一:|FF|=|P F|,即2c=   将c=a+b代入,解得b=2 a

解法二:|PF|=2|P F|,由双曲线定义可知,|PF|-|P F|=2a,得|P F|=2a

∵|P F|=,∴2a=,即b=2 a  ∴=

故所求双曲线的渐近线方程为y=±x 。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,F为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点.P为双曲线C右支上一点,且位于x轴上方,M为左准线上一点,O为坐标原点.已知四边形OFPM为平行四边形,|PF|=λ|OF|.
(Ⅰ)写出双曲线C的离心率e与λ的关系式;
(Ⅱ)当λ=1时,设双曲线右支与x轴的交点为R,且|PR|=2,求此时的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•兰州模拟)已知F为双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦点,P为双曲线C右支上一点,且位于x轴上方,M为直线x=-
a2
c
上一点,O为坐标原点,已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,则双曲线C的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若y=f(x)是定义在R上的函数,则f'(x0)=0是函数y=f(x)在x=x0处取得极值的必要不充分条件.
②用数字1,2,3,4,5组成没有重复数字的五位数,则其中数字2,3相邻的偶数有18个.
③已知函数y=2sin(ωx+θ)(ω>0,0<θ<π)为偶函数,其图象与直线y=2的交点的横坐标为x1,x2,若|x1-x2|的最小值为π,则ω的值为2,θ的值为
π
2

④若P为双曲线x2-
y2
9
=1上一点,F1、F2分别为双曲线的左右焦点,且|PF2|=4,则|PF1|=2或6.
其中正确命题的序号是
②③
②③
(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中的真命题为
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)复平面中满足|z-2|-|z+2|=1的复数z的轨迹是双曲线;
(2)当a在实数集R中变化时,复数z=a2+ai在复平面中的轨迹是一条抛物线;
(3)已知函数y=f(x),x∈R+和数列an=f(n),n∈N,则“数列an=f(n),n∈N递增”是“函数y=f(x),x∈R+递增”的必要非充分条件;
(4)在平面直角坐标系xoy中,将方程g(x,y)=0对应曲线按向量(1,2)平移,得到的新曲线的方程为g(x-1,y-2)=0;
(5)设平面直角坐标系xoy中方程F(x,y)=0表椭圆示一个,则总存在实常数p、q,使得方程F(px,qy)=0表示一个圆.

查看答案和解析>>

同步练习册答案