精英家教网 > 高中数学 > 题目详情

如图,给出函数数学公式图象的一部分,则f(x)的解析式为f(x)=________.


分析:由y=Asin(ωx+φ)的部分图象确定其解析式的题一般是先由图得出A的值以及周期,并由周期得出ω的值,然后再代入点的坐标结合题设中条件解出φ值.由本题的图象及题设条件可得出A=2,T=π求得周期,再由图象过点,代入函数解析式求出φ.
解答:由图,A=2,T=π,故T=π,由公式可得ω==2,故函数解析式为f(x)=2cos(2x+φ)
故函数图象过点,得f()=2cos(2×+φ)=0,即cos(+φ)=0
由余弦函数的性质知,+φ=-,解得φ=,符合
则f(x)的解析式为f(x)=
故答案为:
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,解题的关键是熟练掌握并理解正、余弦函数的性质,由函数图象的特征得出函数解析式中参数的值,从而求出函数的解析式,本题中求φ是难点,要根据选取的点的坐标所在的位置来确定相应的相位的值,求此参数时一般选择用最值点的坐标,此时解是确定的,若题设中没有给出最值点的坐标,则应注意此点是处于函数的增区间上还是减区间上,根据三角函数的性质确定相位的值,求出φ,如本题中点是增区间上的零点,故此点对应的相位是-
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:
①此指数函数的底数为2;
②在第5个月时,野生水葫芦的面积会超过30m2
③野生水葫芦从4m2蔓延到12m2只需1.5个月;
④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3
其中正确的说法有
①②④
①②④
.(请把正确的说法的序号都填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,给出函数f(x)=Acos(ωx+φ)(A>0,|φ|<
π2
)
图象的一部分,则f(x)的解析式为f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数y=f(x),定义:若存在非零常数M、T,使函数f(x)对定义域内的任意实数x,都满足f(x+T)-f(x)=M,则称函数y=f(x)是准周期函数,常数T称为函数y=f(x)的一个准周期.如函数f(x)=x+(-1)x(x∈Z)是以T=2为一个准周期且M=2的准周期函数.
(1)试判断2π是否是函数f(x)=sinx的准周期,说明理由;
(2)证明函数f(x)=2x+sinx是准周期函数,并求出它的一个准周期和相应的M的值;
(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网给出下列5个命题:
①0<a≤
1
5
是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝U
1
1-a
>1+a>
2a

⑤函数f(x)=
tan2x+
(1+i)2
i
+1
tan2x+2
(x≠kπ+
π
2
),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是
 

查看答案和解析>>

同步练习册答案