精英家教网 > 高中数学 > 题目详情

【题目】已知某圆的极坐标方程为

(1)圆的普通方程和参数方程

(2)圆上所有点的最大值和最小值.

【答案】(1);(2)9,1

【解析】

(1)将圆的极坐标方程化为直角坐标方程,然后再化为参数方程即可.(2)根据(1)中的参数方程,将用参数表示,然后再根据三角函数的相关知识并结合换元法求解可得所求

(1)圆的极坐标方程可化为

代入上式,

故所求圆的普通方程为

可得圆的参数方程为为参数).

(2)由(1)可知xy=(2+cos θ)·(2+sin θ)=4+2(cos θ+sin θ)+2cos θ·sin θ

=3+2(cos θ+sin θ)+(cos θ+sin θ)2

sin

所以当t=-,xy有最小值为1;当t=,xy有最大值为9

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】余江人热情好客,凡逢喜事,一定要摆上酒宴,请亲朋好友、同事高邻来助兴庆贺.欢度佳节,迎亲嫁女,乔迁新居,学业有成,仕途风顺,添丁加口,朋友相聚,都要以酒示意,借酒表达内心的欢喜.而凡有酒宴,一定要划拳,划拳是余江酒文化的特色.余江人划拳注重礼节,形式多样;讲究规矩,蕴含着浓厚的传统文化和淳朴的民俗特色.在礼节上,讲究“尊老尚贤敬远客”一般是东道主自己或委托桌上一位酒量好的划拳高手来“做关”,﹣﹣就是依次陪桌上会划拳的划一年数十二拳(也有半年数六拳).十二拳之后晚辈还要敬长辈一杯酒. 再一次家族宴上,小明先陪他的叔叔猜拳12下,最后他还要敬他叔叔一杯,规则如下:前两拳只有小明猜赢叔叔,叔叔才会喝下这杯敬酒,且小明也要陪喝,如果第一拳小明没猜到,则小明喝下第一杯酒,继续猜第二拳,没猜到继续喝第二杯,但第三拳不管谁赢双方同饮自己杯中酒,假设小明每拳赢叔叔的概率为 ,问在敬酒这环节小明喝酒三杯的概率是多少(
(猜拳只是一种娱乐,喝酒千万不要过量!)

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy24x和直线lx=-1.

(1)若曲线C上存在一点Q,它到l的距离与到坐标原点O的距离相等,求Q点的坐标;

(2)过直线l上任一点P作抛物线的两条切线,切点记为AB,求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间[0,2]上任取两个实数a,b,则函数f(x)=x3+ax﹣b在区间[﹣1,1]上有且只有一个零点的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分别为PC,CD的中点
(1)求证:平面ABE⊥平面BEF
(2)设PA=a,若平面EBD与平面ABCD所成锐二面角θ∈[ ],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣e(x+1)lna﹣ (a>0,且a≠1),e为自然对数的底数.
(1)当a=e时,求函数y=f(x)在区间x∈[0,2]上的最大值
(2)若函数f(x)只有一个零点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,∠BAD=120°,∠BCD=60°,cosD=﹣ ,AD=DC=2.
(Ⅰ)求cos∠DAC及AC的长;
(Ⅱ)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)过点作直线使它被直线截得的线段被点平分,求直线的方程;

2)光线沿直线射入,遇直线后反射,求反射光线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量X服从正态分布Nμσ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4σ1,则P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6

查看答案和解析>>

同步练习册答案