精英家教网 > 高中数学 > 题目详情
下列说法正确的是(  )
A、命题“若x=1则x2=1”的否命题为“若x2≠1,则x≠1”
B、命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1>0”
C、“x=y”是“sinx=siny”的充分不必要条件
D、“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分不必要条件
考点:命题的真假判断与应用
专题:简易逻辑
分析:A,写出命题“若x=1则x2=1”的否命题判断其真假即可;
B,写出命题“?x∈R,x2+x-1<0”的否定再判断其真假即可;
C,利用充分必要条件的概念可判断C;
D,利用充分必要条件的概念判断D即可.
解答: 解:对于A:命题“若x=1则x2=1”的否命题为“若x≠1,则x2≠1”,故A错误;
对于B:命题“?x∈R,x2+x-1<0”的否定是“?x∈R,x2+x-1≥0”,故B错误;
对于C:x=y⇒sinx=siny,充分性成立,反之不可,
因此“x=y”“sinx=siny”的充分不必要条件,故C正确;
对于D:“命题p,q中至少有一个为真命题”是“p或q为真命题”的充分必要条件,故D错误.
故选:C.
点评:本题考查命题的真假判断与应用,考查四种命题间的关系及充分必要条件的概念,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点是(1,0),这个椭圆与直线y=x-1交于A、B两点,若以A、B为直径的圆过椭圆左焦点,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥AB,PA⊥AD,且PA=AB=a,求异面直线PD与AC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱锥O-ABC的顶点在空间直角坐标系O-xyz中的坐标分别是O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),则点C到平面OAB的距离为(  )
A、
2
3
3
B、
3
2
C、
6
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥DM如图1所示,其三视图如图2所示,其中正视图和侧视图都是直角三角形,俯视图是矩形.

(1)若E是PD的中点,求证:AE⊥平面PCD;
(2)求此四棱锥的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y≥0
x+y≤4
y≥1
,则目标函数z=2x+y的最小值为(  )
A、2B、3C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

若O为△ABC所在平面内一点,且满足(
OC
-
OB
)•(
OB
+
OC
-2
OA
)=0,则△ABC的形状为(  )
A、正三角形
B、直角三角形
C、等腰三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=
1
ax-1
+
1
2
(a>1).
(1)探究函数f(x)在(0,+∞)上的单调性,并用定义加以证明;
(2)当a=2时,求函数f(x)在[-2,-1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一根长为6厘米的铁丝
(1)若截成三段且长度均为整数,求能构成三角形的概率;
(2)若截成任意长度的两段,求一段长度大于另一段长度2倍的概率.

查看答案和解析>>

同步练习册答案