精英家教网 > 高中数学 > 题目详情
设整数是平面直角坐标系中的点,其中
(1)记为满足的点的个数,求
(2)记为满足是整数的点的个数,求
(1)
(2)
考察计数原理、等差数列求和、分类讨论、归纳推理能力,较难题。
(1)因为满足的每一组解构成一个点P,所以
(2)设,则
对每一个k对应的解数为:n-3k,构成以3为公差的等差数列;
当n-1被3整除时,解数一共有:
当n-1被3除余1时,解数一共有:
当n-1被3除余2时,解数一共有:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

椭圆有两顶点A(﹣1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.

(Ⅰ)当|CD|=时,求直线l的方程;
(Ⅱ)当点P异于A、B两点时,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线的焦点与双曲线的右焦点重合,则的值为(   )
A.-6B.6C.-4D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与轴相交于点
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.

(1)设,求的比值;
(2)当e变化时,是否存在直线l,使得BO∥AN,并说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知过抛物线的焦点,斜率为的直线交抛物线于)两点,且
(1)求该抛物线的方程;
(2)为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中心在原点,对称轴为坐标轴的双曲线C的两条渐近线与圆都相切,则双曲线C的离心率是____;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆经过点,则______,离心率______.

查看答案和解析>>

同步练习册答案