精英家教网 > 高中数学 > 题目详情
(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  
(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。
(I)(II)直线AC的方程为

试题分析:(I)设由抛物线定义,
,  M点C1上,
舍去.
椭圆C1的方程为
(II)为菱形,,设直线AC的方程为 在椭圆C1上,,则
的中点坐标为,由ABCD为菱形可知,点在直线BD:上,∴直线AC的方程为
点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了抛物线的定义及椭圆的几何性质。为求直线AC的方程,本题利利用了待定系数法,通过联立方程组,应用韦达定理,确定了AC、BD的中点坐标,代人已知方程,得到“待定系数”,达到了解题目的。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上 ,且满足.
(Ⅰ)当点P在y轴上移动时,求点M的轨迹C的方程;
(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知焦点在x轴上的双曲线的渐近线方程是y=±4x,则该双曲线的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为双曲线C:的左、右焦点,点上,,则P轴的距离为 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的虚轴长是实轴长的2倍,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:

(1)ABD为二面角A-BC-D的平面角;(2)ACBD;(3) △ACD是等边三角形;
(4)直线AB与平面BCD成600的角;
其中正确的结论的序号是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,已知抛物线的焦点为.过点的直线交抛物线于两点,直线分别与抛物线交于点

(Ⅰ)求的值;
(Ⅱ)记直线的斜率为,直线的斜率为.证明:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线的准线方程是的值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题满分14分)
已知△的两个顶点的坐标分别是,且所在直线的斜率之积等于
(Ⅰ)求顶点的轨迹的方程,并判断轨迹为何种圆锥曲线;
(Ⅱ)当时,过点的直线交曲线两点,设点关于轴的对称点为(不重合).求证直线轴的交点为定点,并求出该定点的坐标.

查看答案和解析>>

同步练习册答案