精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-6x-8y=0,若过圆内一点(3,5)的最长弦为AC,最短弦为BD;则四边形ABCD的面积为(  )
分析:将圆C方程化为标准方程,找出圆心C坐标与半径r,过点(3,5)最长的弦即为过此点的直径,最短的弦即为与此直径垂直的弦,利用垂径定理及勾股定理求出|BD|的长,利用对角线垂直的四边形面积等于对角线乘积的一半即可求出四边形ABCD的面积.
解答:解:将圆C方程化为标准方程得:(x-3)2+(y-4)2=25,
∴圆心C(3,4),半径r=5,
∴过圆内一点(3,5)的最长弦为|AC|=10,且直线AC的斜率不存在,
∴直线BD的斜率为0,即直线BD解析式为y=5,
∴圆心C到直线BD的距离d=1,
∴最短弦为|BD|=2
52-12
=4
6

则四边形ABCD的面积S=
1
2
|AC|•|BD|=20
6

故选A
点评:此题考查了直线与圆的相交的性质,涉及的知识有:圆的标准方程,垂径定理,勾股定理,以及四边形的面积,找出最长的弦与最短的弦长是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案