【题目】已知函数().
(1)若,求曲线在点处的切线方程.
(2)当时,求函数的单调区间.
(3)设函数若对于任意,都有成立,求实数a的取值范围.
【答案】(1);(2)当时,增区间为,,减区间为;当时,的增区间为无减区间;(3).
【解析】
(1)先由题意,得到,对其求导,得到对应的切线斜率,进而可得出所求切线方程;
(2)先对函数求导,得到,分别讨论,和,解对应的不等式,即可得出结果;
(3)先根据题意,得到在上恒成立,满足不等式,只需在上恒成立,令,,对其求导,求出的最大值,即可得出结果.
(1)若,则(),,
又(),所以,
在处切线方程为.
(2)
令,即,解出或.
当(即时),
由得或,
由得,
增区间为,,减区间为.
当,即时,
,在上恒成立,
的增区间为,无减区间..
综上,时,增区间为,,减区间为,
时,增区间为,无减区间.
(3),有恒成立,
则在上恒成立,
当时,,即满足不等式;
即在上恒成立,
令,,
由题意,只需当时,即可,
因为,
当时,显然恒成立,所以在上单调递增,
.,.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).
注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.
A. 互联网行业从业人员中90后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的20%
C. 互联网行业中从事运营岗位的人数90后比80前多
D. 互联网行业中从事技术岗位的人数90后比80后多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“开门大吉”是某电视台推出的游戏节目,选手面对1号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段: ; (单位:岁),其猜对歌曲名称与否的人数如图所示.
(Ⅰ)写出列联表;判断是否有的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在岁之间的概率.
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,长轴长是短轴长的2倍.
(1)求椭圆的方程;
(2)设直线经过点且与椭圆相交于两点(异于点),记直线的斜率为,直线的斜率为,证明:为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,抛物线上横坐标为的点到焦点的距离为.
(Ⅰ)求抛物线的方程及其准线方程;
(Ⅱ)过的直线交抛物线于不同的两点,交直线于点,直线交直线于点. 是否存在这样的直线,使得? 若不存在,请说明理由;若存在,求出直线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com