精英家教网 > 高中数学 > 题目详情
已知椭圆上的点P到左、右两焦点F1、F2的距离之和为,离心率
(I)求椭圆的方程;
(II)过右焦点F2且不垂直于坐标轴的直线l交椭圆于A,B两点,试问:险段OF2上是否存在一点M,使得|MA|=|MB|?请作出并证明.
【答案】分析:(I)根据点P到左、右两焦点F1、F2的距离之和求得a,进而根据离心率e求得c,再根据b=求得b,椭圆的方程可得.
(II)设直线的方程为y=k(x-1),直线方程与椭圆方程联立,设A(x1,y1),B(x2,y2),以及AB的中点C(x,y),根据韦达定理可得x1+x2的表达式,根据x=进而可得x和y的表达式,再根据设满足条件的点M(m,0),根据CM⊥AB,kCM•kAB=-1,代入即可得到m和k的关系式,进而根据k的范围确定m的范围,进而判断存在满足条件的点M.
解答:解:(I)椭圆的方程圆设a>b
∵点P到左、右两焦点F1、F2的距离之和为
∴2a=2,a=
∵离心率e==
∴c=1,b==1
∴所求椭圆的方程为
(II)存在满足条件的M,
证明:设直线的方程为y=k(x-1)(k≠0)

可得(1+2k2)x2-4k2x+2k2-2=0,
设A(x1,y1),B(x2,y2),以及AB的中点C(x,y),
∴x1+x2=
∴x==,y=k(x-1)=-
再设满足条件的点M(m,0),则0≤m≤1,
所以CM⊥AB,则kCM•kAB=-1
由kCM==
•k=-1,解得m=
∵k2>0,可得0<m<,故存在满足条件的点M.
点评:本题主要考查了椭圆与直线的关系和椭圆的标准方程问题.圆锥曲线的问题是历年来高考中重点考查的题型,故应加强这方面的复习.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
上的点P到左、右两焦点F1、F2的距离之和为2
2
,离心率e=
2
2

(I)求椭圆的方程;
(II)过右焦点F2且不垂直于坐标轴的直线l交椭圆于A,B两点,试问:险段OF2上是否存在一点M,使得|MA|=|MB|?请作出并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆3x2+4y2=12上的点P与左焦点的距离为
52
,求点P到右准线的距离.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆市西南师大附中高三(上)12月月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为( )
A.
B.
C.5
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆上的一点P到左焦点的距离为,则点P到右准线的距离为(    )

       A.       B. C.5      D.3

查看答案和解析>>

同步练习册答案