精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,设过的直线的斜率存在且不为0,直线交椭圆于两点,若中点为为原点,直线于点

(1)求证:

(2)求的最大值.

【答案】(1)证明见解析;(2).

【解析】

试题分析:

(1)设直线的斜率为),联立直线方程与椭圆方程可得结合韦达定理可得线段中点的坐标为据此计算可得直线的斜率为.

(2)考查.换元令,则.结合二次函数的性质可得时,取最大值3,此时取最大值

试题解析:

(1)证明:设直线的斜率为),则直线的方程为

联立方程组消去可得

,则于是有

所以线段中点的坐标为

又直线的斜率,因此直线的方程为,它与直线的交点,故直线的斜率为,于是. 

因此.

(2)解:记

,则

因为,所以

故当时,即时,取最大值3.

从而当时,取最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,焦距为 2,一条准线方程为为椭圆上一点,直线交椭圆于另一点.

(1)求椭圆的方程;

(2)若点的坐标为,求过三点的圆的方程;

(3)若,且,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:

停靠时间

2.5

3

3.5

4

4.5

5

5.5

6

轮船数量

12

12

17

20

15

13

8

3

(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;

(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,几何体AMDCNB是由两个完全相同的四棱锥构成的几何体,这两个四棱锥的底面ABCD为正方形,,平面平面ABCD.

(1)证明:平面平面MDC.

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.某机构组织了一场诗词知识竞赛,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,从中随机抽取100名选手进行调查,如图是根据调查结果绘制的选手等级与人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此判断能否在犯错误的概率不超过0.05的前提下认为选手成绩优秀与文化程度有关?

优秀

合格

总计

大学组

中学组

总计

(2)若参赛选手共6万名,用频率估计概率,试估计其中优秀等级的选手人数;

(3)在优秀等级的选手中选取6名,在良好等级的选手中选取6名,都依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组有唯一一组实数解(xy)的概率.

参考公式:,其中.

参考数据:

P(K2k0)

0.10

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1中,D,E分别是ABBB1的中点.

)证明: BC1//平面A1CD;

)设AA1= AC=CB=2AB=2,求三棱锥CA1DE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;

(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;

(3)请根据频率分布直方图,求样本数据的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,已知

(1)求证:

(2)若平面平面,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆

1)若圆相交,求的取值范围;

2)若圆与直线相交于两点,且,求的值;

3)已知点,圆上一点,圆上一点,求的最小值的取值范围.

查看答案和解析>>

同步练习册答案