精英家教网 > 高中数学 > 题目详情
3.己知点H是xOy直角坐标平面上一动点,A($\sqrt{5}$,0),B(0,2),C(0,-1)是平面上的定点.
(1)$\frac{|HB|}{|HA|}$=2时,求H的轨迹方程;
(2)当H在线段BC上移动,求$\frac{|HB|}{|HA|}$的最大值及H点坐标.

分析 (1)设H(x,y),利用$\frac{|HB|}{|HA|}$=2,建立方程,化简得H的轨迹方程;
(2)$\frac{|HB|}{|HA|}$=$\frac{2-y}{\sqrt{5+{y}^{2}}}$,设2-y=t,则$\frac{|HB|}{|HA|}$=$\frac{2-y}{\sqrt{5+{y}^{2}}}$=$\frac{t}{\sqrt{{t}^{2}-4t+9}}$=$\frac{1}{\sqrt{(\frac{3}{t}-\frac{2}{3})^{2}+\frac{5}{9}}}$,故由二次函数的单调性求$\frac{|HB|}{|HA|}$的最大值及H点坐标.

解答 解:(1)设H(x,y),
∵$\frac{|HB|}{|HA|}$=2,
∴x2+(y-2)2=4(x-$\sqrt{5}$)2+4y2
化简得3x2+3y2-8$\sqrt{5}$x+4y+16=0;
(2)$\frac{|HB|}{|HA|}$=$\frac{2-y}{\sqrt{5+{y}^{2}}}$,
设2-y=t,则$\frac{|HB|}{|HA|}$=$\frac{2-y}{\sqrt{5+{y}^{2}}}$=$\frac{t}{\sqrt{{t}^{2}-4t+9}}$=$\frac{1}{\sqrt{(\frac{3}{t}-\frac{2}{3})^{2}+\frac{5}{9}}}$,
故由二次函数的单调性,y=-1时,最大值为$\frac{\sqrt{6}}{2}$,H的坐标是(0,-1).

点评 本题考查轨迹方程,考查二次函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.二次函数的对称轴为x=1,且有最小值为3,函数经过点(2,5),求函数的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设abc>0,二次函数f(x)=ax2+bx+c的图象可能是下列图形中的①(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知tanα=$\frac{1}{2}$,求sin2α+5cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x>3,求证:$\frac{4}{x-3}$+x≥7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.当x>2时,若ax-2<1(a>0,a≠1)成立,则实数a的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若logx$\root{7}{y}$=z,则(  )
A.y7=xzB.y=x7zC.y=7•xzD.x=z7y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=logax-1(a>0,且a≠1)的图象恒过定点(  )
A.(1,0)B.(0,-1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.y=${(m{x}^{2}+4x+m+2)}^{-\frac{1}{4}}$+(x2-mx+1)的定义域是全体实数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案