精英家教网 > 高中数学 > 题目详情
已知U=R,集合A={x|x2-x-2=0},B={x|mx+1=0},B∩(?UA)=∅,则m的解的集合为
{1,-
1
2
}
{1,-
1
2
}
分析:求出集合A中方程的解确定出A,求出A的补集,根据A补集与B交集为空集即可确定出m的值.
解答:解:集合A中的方程x2-x-2=0,解得:x=2或x=-1,即A={-1,2},
∴CUA={x|x≠-1且x≠2},
∵B={x|x=-
1
m
},B∩(CUA)=∅,
∴-
1
m
=-1或2
解得:m=1或m=-
1
2

故答案为:{1,-
1
2
}
点评:此题考查是交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知U=R,集合A={a|a≥2或a≤-2},B={a|关于x的方程ax2-x+1=0有实根},求A∪B,A∩B,A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U=R,集合A={x|x2-3x-4≥0},B={x|x2-2ax+a+2=0}.若(?UA)∪B=?UA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U=R,集合A={x|
x-2x-3
≤0}
,B={x|(x-a)(x-a2-1)≤0},a∈R.
(1)若log2a=0,求(?UB)∩A;
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知U=R,集合A={x|x2-3x-4≥0},B={x|x2-2ax+a+2=0}.若(?UA)∪B=?UA,求实数a的取值范围.

查看答案和解析>>

同步练习册答案